Distributed I/O and Control Modicon Momentum

Catalog
July
05

catalogues for

Detection

[D]

Global Detection
Electronic and
electromechanical sensors
№ 54752 - MKTED203031EN
Limit switches
Proximity sensors
Photo-electric and ultrasonic
sensors
Pressure switches
Rotary encoders

Software

Safety mat configuration software

Not all products shown in this catalogue are available in every country.
Check individual country's web site or Sales Office for product availability.
See on: www.schneider-electric.com

Simply Smart!

......... all Automation \& Control functions

Motion control

[1]

Motion control Lexium 17D
№ 806381 -MKTED205031EN

(1)

Twin Line Motion control
$\mathrm{N}^{\circ} 061233$ -
DIA7ED2030902EN
Servodrives and brushless motors
Motion control modules
Modicon Premium and
Modicon Quantum

Software

Software for drives and motors

Power supplies

DD

Interfaces, I/O splitter boxes and power supplies
№ 70263 - MKTED203113EN
Switch mode power supplies

Filtered rectified power supplies and transformers

Machine safety
 Interfaces \& $/ / 0$

 AS-InterfaceNetworks \& communication

This catalogue contains
Automation and Control function products relating to the AS-Interface cabling system

DD
AS-Interface cabling system № 804961 - MKTED204121EN

IP20/IP67 interfaces, cables,
repeaters, addressing and adjustment terminals

Control stations, keypads, beacons \& indicator banks

Master modules for PLCs
AS-Interface power supplies
Motor controllers, enclosures, variable speed drives

[1]

Ethernet TCP/IP
Transparent Ready
N 802731 - MKTED204073EN
Connecting Ethernet devices
Web-enabling PLCs on
Ethernet
Application protocols and field buses

Distributed I/O and control Modicon Momentum

- Presentation page 6 \& 7
Discrete I/O bases
Selection guide page 8-11
■ Presentation, description page 12
■ Characteristics page 13-18
- References page 19
■ Dimensions, mounting page 20
- Connections page 21-25
Analog I/O bases
Selection guidepage 26 \& 27
- Presentation, description page 28
■ Characteristics page 29-33
■ References page 34
■ Dimensions, mounting page 35
- Connections page 36 \& 37
Specialty module I/O bases
Selection guide page 38 \& 39
- Presentation, description page 40
■ Characteristics page 41
■ References page 42
■ Connections page 43
Communication adapters
Selection guide . page $44-47$
■ Ethernet TCP/IP network communication adapters page 48 \& 49
■ Modbus Plus network communication adapters page $50-53$
■ Fipio bus communication adapters . page 54 \& 55
■ INTERBus bus communication adapters . page 56 \& 57
■ Profibus DP bus communication adapter . page 58 \& 59
■ DeviceNet network communication adapter page $60 \& 61$
M1/M1E processor adapters and option adapters
Processor adapters selection guide page 62 \& 63
- M1/M1E processor adapters
ㅁ Presentation page 64
- Description page 65
- Characteristics page 66-69
- References page 70
\square Power supply page 71
Option adapters selection guide page 72 \& 73
■ Option adapters
- Presentation page 74
- Description page 75
- Characteristics page 76
- References page 77
Ethernet cabling system
- ConneXium hubs page 78
■ ConneXium transceivers page 79
- ConneXium switches page 80-82
■ ConneXium connection cables page 83
Programming software (for M1/M1E processor adapters)
■ Concept IEC programming software
- Presentation page 84
- Functions page 85-88
口 References page 89
■ ProWORX 32 for 984 Ladder Logic programming
- Presentation page 90-92
- References page 93
Additional products and services■ Optional conformal coating for aggressive environments
- Presentation page 94
- References page 95
■ Enhanced grounding system
- Presentation page 96
- References page 96
- User documentation page 97
- Automation product certifications page 98
- Community regulations page 99
■ Product reference index page 100

A modular concept with four easy pieces

The Momentum I/O system comprises 4 fundamental components that easily snap together in various combinations to form versatile distributed I/O system.

The four pieces are:
I/O bases
Communication adapter
Processor adapters
Option adapters.
I/O base

Momentum communication adapters

Momentum's design separates the communications from the I/O base 1, thus creating a truly open I/O system that can be easily adapted to any field-bus network. When a Momentum I/O is coupled with a communication adapter 2, the two form a remote I/O drop that connects directly to virtually any standard field-bus I/O network. Together, Momentum I/O supports control systems based on personal computers, distributed control systems, programmable controllers and Momentum processors.

Modicon Momentum automation platform
 Introduction

Momentum processor adapters 3 and option adapters 4 (1)
When local distributed intelligence is required at the point of control, Momentum has the answer. Momentum M1 processor adapters 3 are full fledged PLCs containing a CPU, RAM and Flash memory. They are based on the popular Modicon family of PLCs (i.e., directly compatible with Quantum, Compact and 984 PLCs), and snap onto the Momentum I/O bases 1, just like the communication adapters 2.

The option adapter 4 provides the processor adapters with additional networking capabilities, a time-of-day clock, and a battery back-up. The option adapters also snap onto the I/O base; in the figure below, the processor adapter is stacked on top.

Optional conformal coating

If your control system needs to operate in a corrosive environment, selected Momentum modules can be ordered with a conformal coating applied to components of the product. Conformal coating will extend its life and enhance its environmental. performance capabilities.

See pages 94 and 95 .

Enhanced grounding system

Due to new INTERBus standards for electrical noise immunity, a number of Momentum products have been updated to include the enhanced grounding system, which is required to meet the revised electrical noise immunity standard (ability to pass a 2.2 kV electrical fast transient burst test).

See page 96 for a list of Momentum products that currently have been updated to include the new grounding system.

Output type

Current capacity	$\frac{\text { Per output }}{\frac{\text { Per group }}{\text { Per module }}}$
Response time	$\frac{\text { OFF-ON }}{\text { ON-OFF }}$

Pages

Input modules for alternating current

True high
24 VDC

max. 250 mA

IEC 1131 Type 1+

Output modules for direct current		Output modules for alternating current				Relay output module
True high						
24 VDC		120 VAC		230 VAC		120 to 230 VDC
max. 250 mA		max. 125 mA		max. 65 mA		125 mA @ 120 VAC 65 mA @ 230VDC
-						
24 VDC		120 VAC		230 VAC		$\begin{aligned} & 20 \text { to } 250 \text { VAC } \\ & 5 \text { to } 30 \text { VDC } \end{aligned}$
Solid state switch		Triac				Relay from "C"
2×8 out	2×16 out	2×4 out	2×8 out	2×4 out	2×8 out	6 out (isolated)
None		None				1780 VAC for 1 mn
None		None				1780 VAC for 1 mn
500 VAC		1780 VAC				1780 VAC for 1 mn
0.5 A	0.5 A	2 A	0.5 A	2 A	0.5 A	5 A
4 A	8 A	4 A	4 A	4 A	4 A	5 A
8 A	16 A	8 A	8 A	8 A	8 A	$\begin{aligned} & 21 \mathrm{~A} @ 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A} @ 30^{\circ} \mathrm{C} \end{aligned}$
$<0.1 \mathrm{~ms}$		max. $1 / 2 \times 1 / \mathrm{f}$				10 ms
$<0.1 \mathrm{~ms}$		max. $1 / 2 \times 1 / \mathrm{f}$				20 ms
Electronically safeguarded		1 fuse per group				-
1 LED/Out	1 LED/4 Out	None				-
to adapter	to adapter	None				-
-	-	1 LED				-
170ADO34000	170AD035000	170ADO53050	170AD054050	170ADO73050	170AD04050	170ADO83030

Selection guide (continued)
Modicon Momentum automation platform
Discrete I/O bases

I/O modules for direct current

True high	True low	True high
24 VDC		
24 VDC		

max. 250 mA	max. $250 \mathrm{~mA}+$ sensor current

IEC 1131 Type 1+

24 VDC

Solid state switch

$$
1 \times 16 \ln , 2 \times 8 \text { Out }
$$

$4 \times 4 \ln , 2 \times 4$ Out

None			
None			
500 VAC			
0.5 A			2 A
4 A			8 A
8 A			16 A
2.2 ms $\mathrm{ln},<1 \mathrm{~ms} \mathrm{Out}$	$60 \mu \mathrm{sin},<1 \mathrm{~ms}$ Out	$2.2 \mathrm{~ms} \mathrm{ln},<1 \mathrm{~ms}$ Out	
$3.3 \mathrm{~ms} \mathrm{In},<1 \mathrm{~ms}$ Out	$80 \mu \mathrm{sin},<1 \mathrm{~ms}$ Out	$3.3 \mathrm{~ms} \mathrm{In},<1 \mathrm{~ms}$ Out	

Electrically safeguarded outputs

Electrically safeguarded outputs and 4 electronically safeguarded sensor supply group

1 LED/Out
 to adapter

170ADM35010

170ADM35011

170ADM35015
170ADM37010

15

16

I/O modules for direct and alternating current

I/O modules for direct current

True high
24 VDC

12, 24, 48 VDC

12, 24, 48 VDC

500 mA @ 12 VDC 250 mA @ 24 VDC 125 mA @ 48 VDC

IEC 1131 Type 1+, monitored

24 VDC

Solid state switch
$1 \times 16 \operatorname{In}, 1 \times 8$ Out and
1×4 Out

None
None
500 VAC
0.5 A
4 A group 1, 2 A group 2
6 A

2.2 ms $\mathrm{In},<1 \mathrm{~ms}$ Out
$3.3 \mathrm{~ms} \mathrm{In},<1 \mathrm{~ms}$ Out
Electronically safeguarded outputs

$1 \mathrm{LED} / \mathrm{In}, 1$ LED/Out
to adapter
-

170ADM39010

15
$1 \times 16 \ln , 1 \times 16$ Out

None
None
707 VDC

0.5 A
-
$8 \mathrm{~A} @ 50^{\circ} \mathrm{C}, 7 \mathrm{~A} @ 60^{\circ} \mathrm{C}$

$\frac{2.2 \mathrm{~ms} \mathrm{In},<2.5 \mathrm{~ms} \text { Out }}{3.3 \mathrm{~ms} \mathrm{In},<2.5 \mathrm{~ms} \text { Out }}$
Electrically safeguarded
outputs

1 LED/Out
to adapter
-

170ADM85010

16
24 VDC
max. 180 mA

12, 24, 48 VDC

None	
None	1780 VAC
500 VAC	1780 VAC
500 VAC	

2 A ohmic load
8 A ohmic load
16 A ohmic load

$\frac{2.2 \mathrm{~ms} \mathrm{In},<10 \mathrm{~ms} \text { Out }}{3.3 \mathrm{~ms} \mathrm{In},<10 \mathrm{~ms} \text { Out }}$

None	Varistor in parallel with each contact

None
None
-

170ADM39030

17

120 VAC
max. 160 mA

IEC 1131 Type 2
120... 132 VAC

Triac

$1 \times 10 \ln , 1 \times 8$ Out

$\frac{\max 1 / 2 \times 1 / f}{\max 1 / 2 \times 1 / f}$

1 internal fuse per group (not against overload)

None
 None
 1 LED/fuse

170ADM69051

18

Presentation

The Momentum Automation Platform products are modular. Communication Adapters and Processor Adapters are designed to work as functional modules when they are snapped onto a Momentum I/O base. An I/O base requires some type of Momentum Adapter assembled on it before it can be functional.

The I/O bases fit into compact standard housings that can be mounted on a DIN rail or on panels in a cabinet. They read information from field sensing devices and control discrete and analog field actuating devices. Terminal blocks and bus bars are available for use with the bases so that they can be used to support 2-, 3-, and 4-wire field devices.

The I/O field devices and the power supply to the module are connected via three 18-pin terminal blocks and an optional 1-, 2-, or 3-row busbar. The terminal connectors are electrically connected to the module; the optional busbars not.

Busbars provide a common connection for the field devices and serve as protective distribution connectors. Depending on the I/O base and the type and number of field devices to which it is connected, a 1-, 2-, or 3-row busbar may be used.

Terminal blocks and busbars are ordered separately, and are not shipped with the Momentum I/O bases. They are available in either screw-in or spring-clip versions.

Description

170ADe discrete I/O base units comprise on the front panel:

1 An internal interface connector for the communication module or processor module.
2 A locking and earth contact for the communication module or processor module.
3 LED status indicators (the number of indicators will depend on the number of channels).
4 Up to three connectors for the removable terminal blocks (Modbus dependent).
5 An grounding screw.
6 A slot for the power strip.
7 Two holes for panel mounting.
Connectors to be ordered separately:
■ removable screw or spring terminals 170XTS00000
■ 1 to 3-row screw or spring bus bar 170XTS00e01.

Characteristics:	References:	Dimensions, mounting:	Connections:
pages 13 to 18	page 19	page 20	pages 21 to 25

Characteristics of discrete input bases

Type of input base unit			170 ADI34000	170ADI35000	170 ADI54050	170 ADI74050
Number of inputs			1×16	2×16	2×8	
Input voltage		V	24 DC		120 AC	230 AC
Operating voltage		V	24 DC		85 to 132 AC (@ 47 to 63 Hz)	164 to 253 AC (@ 47 to 63 Hz)
Internal current		mA	250 @ 24 VDC)		125 (@ 120 VAC)	125 (@ 230 VAC)
Input voltage range		V	- 3 to 30 DC		0 to 132 AC	163 to 253 AC
	ON voltage	V	+ 11 to 30 DC		74 AC minimum	164 AC minimum
	OFF voltage	V	- 3 to +5 DC		20 AC maximum	40 AC maximum
Input current	ON	mA	2.5 minimum		10.0 minimum	
	OFF	mA	1.2 maximum		2.0 maximum	
Input resistance		k Ω	4		$\begin{aligned} & 9.5 @ 50 \mathrm{~Hz} \\ & 7.5 @ 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 9 @ 50 \mathrm{~Hz} \\ & 7.5 @ 60 \mathrm{~Hz} \end{aligned}$
Type of signal			True High			
Response time	On-off maximum	ms	3.3		35.0 @ 60 Hz	13.3 @ 60 Hz
	Off-on maximum	ms	2.2		10.0 @ 60 Hz	13.3 @ 60 Hz
Potential isolation	Input to input		None		None	
	Group to group	V	None		1780 AC	
	Field to communication interface	V	500 AC		1780 AC	
Power dissipation		W	3 typical, 5 maximum	5.5 typical, 8.5 maximum	-	
Agency approvals			UL, C ϵ, CSA, FM Class I, Div. II	UL, C€, CSA	$\begin{aligned} & \text { UL, C€, CSA, FM } \\ & \text { Class I, Div. II } \end{aligned}$	UL, C€, CSA

References:	Dimensions, mounting:	Connections:
page 19	pages 20	pages 21 to 25

Characteristics of discrete output bases

Type of output base unit			170ADO34000	170ADO35000	170ADO83030	
Number of outputs			2×8	2×16	1×6	
Type of output			Solid state switch		Relay form "C"	
Output voltage		V	24 DC		20 to 250 AC, 5 to 30 DC	
Operating voltage		V	24 DC		120 to 230 AC	
Internal current		mA	250 @ 24 VDC		125 @ 120 VAC, 65 @ 230 VAC	
Current	Point maximum	A	0.5	0.5	5	
	Group	A	4	8	5	
	Module	A	8	16	21 @ $60^{\circ} \mathrm{C}, 25$ @ $30^{\circ} \mathrm{C}$	
Min. output current		mA	-		50	
Leakage current		mA	< 1 @ 24 VDC		< 0.1 @ 120 VAC	
Surge current		A	5 for 1 ms		20 for 10 ms	
On State Voltage drop		V	<0.5 DC @ 0.5 A		<0.2 @ 30 VDC	
Protection (short-circuits, overloads)			Outputs electronically protected		Via external 315 mA fast-blow fuse	
Response time	On-off maximum	ms	<0.1		20 @ 60 Hz	
	Off-on maximum	ms	< 0.1		10 @ 60 Hz	
Potential Isolation	Output to output	V	None		1780 AC for 1 minute	
	Output group to output group	V	None		1780 AC for 1 minute	
	Field to communication interface	V	500 AC		1780 AC for 1 minute	
Power dissipation		W	3.5 typical 4.5 maximum	6.0 typical 7.5 maximum	2.5	
Agency approvals			$\begin{aligned} & \text { UL, C€, CSA, } \\ & \text { FM Class I, Div. II } \end{aligned}$	UL, C ¢, CSA	UL, c¢, CSA, FM Class I, Div. II	
Type of output base unit			170ADO53050	170ADO54050	170ADO73050	170ADO74050
Number of outputs			2×4	2×8	2×4	2×8
Type of output			Triac			
Output voltage		V	120 AC		230 AC	
Operating voltage		V	120 AC (300 for $10 \mathrm{~s}, 400$ for 1 cycle)		230 AC (300 for 10 s, 400 for 1 cycle)	
Internal current		mA	125		65	
Current	Point maximum	A	2	0.5	2	0.5
	Group	A	4			
	Module	A	8			
Min. output current		mA	5	30	5	30
Leakage current		mA	1.9 @ 120 VAC		2.5 @ 230 VAC	2.4 @230 VAC
Surge current		A	Point: 15 (1 cycle), 10 (2 cycles), 5 (3 cycles)			
On State Voltage drop		V	<1.5 AC @ 2 A	< 1.5 AC @ 0.5 A	< 1.5 AC @ 2 A	$<1.5 \mathrm{AC}$ @ 0.5 A
Protection (short-circuits, overloads)			Via internal 5 A slow-blow fuse per group			
Response time	On-off maximum	ms	$1 / 2 \times 1 / \mathrm{f}(=0,5$ of one line cycle)			
	Off-on maximum	ms	$1 / 2 \times 1 / \mathrm{f}$ (= 0,5 of one line cycle)			
Potential Isolation	Output to output		None			
	Output group to output group		None			
	Field to communication interface	V	1780 AC			
Power dissipation		W	6.0 typical 7.5 maximum			
Agency approvals			UL, c¢, CSA, FM Class I, Div. II			
Description: References: page 12 page 19		Dimensions, mounting: pages 20		Connections: pages 21 to 25		

Characteristics of discrete I/O bases

Type of base unit				170ADM35010	170ADM35011	170ADM35015	170ADM39010
Number of inputs				1×16			1×16
Number of outputs				2×8			1×8 and 1×4
Operating voltage			VDC	24			
Internal current			mA	250 @ 24 VDC			180 @ 24 VDC
Inputs	Voltage		VDC	24			
	Type of signal			True high		True low	True high
	Voltage at 1		VDC	+ 11 to +30		-3 to +5	+ 11 to + 30
	Voltage at 0		VDC	-3 to +5		+ 4 to +30	-3 to +5
	Input current		mA	2.5 min. at state $1(6 \mathrm{~mA}$ at c 24 V$), 1.2 \mathrm{max}$. at state 0			
	Input voltage range		VDC	-3 to +30			
	Input resistance		$\mathrm{k} \Omega$	4			
	Response time	Off to on	ms	2.2	0.06	$2.2 \mathrm{In},<1$ Out	
		On to off	ms	3.3	0.08	$3.3 \mathrm{In},<1$ Out	
	Fault sensing			-			Broken wire detection
Outputs	Voltage		VDC	24,30 max.			
	Type			Solid state switch			
	Type of signal			True high		True low	True high
	Current capacity		A	0.5 per point 4 per group 8 per module			0.5 per point 4 per group 1 2 per group 2 6 per module
	Leakage current		mA	< 1 @ 24 VDC			< 1 @ 24 VDC
	Peak current		A	5 for 1 ms			-
	On state voltage drop		VDC	< 0.5 @ 0.5 A			-
	Error indication			Output overload for at least one output to communication adapter			Output overload for at least one output to communication adapter
	Response time	Off to On	ms	<0.1			
		On to Off	ms	<0.1			
Potential isolation	Input to input			None			
	Output to output group			None			
	Input to output group			None			
	Field to communication interface		V	500 AC			
Power dissipation	Typical		W	6.0			6.5
	Maximum		W	8.0			10.0
Agency approvals				UL, C€, CSA			$\begin{aligned} & \text { UL, C C, CSA, FM } \\ & \text { Class I, Div. II } \end{aligned}$

Characteristics of discrete I/O bases

Type of base unit			170ADM 3701	170ADM 85010
Number of points	Inputs		4×4	1×16
	Outputs		2×4	1×16
Operating voltage		VDC	24	12, 24, 48 (10 to 60)
Internal current		mA	250 @ 24 VDC (plus current for sensors)	500 @ 12 VDC 250 @ 24 VDC 125 @ 48 VDC
Inputs	Voltage	VDC	24	12, 24, 48
	Type of signal		True high	
	Voltage at 1	VDC	+ 11 to + 30	$\begin{aligned} & >7.5 @ 12 \text { VDC } \\ & >11 @ 24 \text { VDC } \\ & >30 @ 48 \text { VDC } \end{aligned}$
	Voltage at 0	VDC	-3 to +5	$\begin{aligned} & <2.5 @ 12 \text { VDC } \\ & <5 @ 24 \text { VDC } \\ & <10 @ 48 \text { VDC } \end{aligned}$
	Input current	mA	2.5 min . at state $1(6 \mathrm{~mA}$ at c 24 V$)$, 1.2 max. at state 0	$\begin{aligned} & 2.3 @ 12 \text { VDC } \\ & 2.7 @ 24 \text { VDC } \\ & 2.9 @ 48 \text { VDC } \end{aligned}$
	Input voltage range	VDC	-3 to +30	10 to 60 V
	Input resistance	k Ω	4	-
	Response time	ms	$2.2 \mathrm{In},<1$ Out	$2.2 \mathrm{In},<2.5$ Out
		ms	$3.3 \mathrm{In},<1$ Out	$3.3 \mathrm{In},<2.5$ Out
	Fault sensing		-	
Outputs	Voltage	VDC	24, 30 max.	12, 24, 48, 60 max.
	Type		Solid state switch	
	Type of signal		True high	
	Current capacity	A	2 per point 8 per group 16 per module	0.5 per point 8 per group @ $50^{\circ} \mathrm{C}$ 7 per module @ $60^{\circ} \mathrm{C}$
	Leakage current	mA	< 1 @ 24 VDC	< 1 @ 60 VDC
	Peak current	A	2.8 for 1 ms	5 for 1 ms
	On state voltage drop	VDC	-	< 1 @ 0.5 A
	Error indication		Output overload for at least one output or short-circuit or overload on one of the 4 encoder supply groups, to communication adapter	Output overload for at least one output to communication adapter
	Response time	ms	<0.1 Off to On, <0.1 On to Off	
Potential isolation Input to input			None	
	Output to output group		None	
	Input to output group	V	None	707 DC
	Field to communication interface	Vrms	500 AC	707 DC
Power dissipation	Typical	W	6.5	$6.0+(0.144 \times \mathrm{nb}$ of input points) $+(0.25 \times \mathrm{nb}$ of output points)
	Maximum	W	10.0	-
Agency approvals			UL, C€, CSA	UL, C€, CSA, FM Class I, Div. II

Description: page 12	References: page 19	Dimensions, mounting: pages 20	Connections: pages 21 to 25	
16		(eif Telemecanique		Schneider Electric

Characteristics of discrete I/O bases (continued)

Type of base unit			170ADM39030	170RM37030
Number of points	Inputs		1×10	
	Outputs		2×4	
Operating voltage		V	24 DC	$120 \mathrm{AC}(47$ to 63 Hz)
Internal current		mA	250 @ 24 VDC	5 minimum load current
Inputs	Voltage	V	$\begin{aligned} & 24 \text { to } 230 \mathrm{AC} \\ & 20 \text { to } 115 \mathrm{DC} \end{aligned}$	
	Signal type		True High	
	On voltage minimum	VDC	+ 11 to + 30	
	Off voltage maximum	VDC	-3 to +5	
	Input current	mA	2.5 minimum On, 1.2 maximum Off	
	Input voltage range	VDC	-3 to +30	
	Input resistance	k Ω	4	
	Response time	ms	2.2 Off to On, 3.3 On to Off	
Outputs	Voltage	V	24 to 230 AC, 20 to 115 DC	
	Type		Relay normally open	
	Current capacity 24 VDC	A	>0.005 (new contacts), ohmic load 2 A maximum, inductive load 1 A maximum ($\mathrm{LR} \leqslant 40 \mathrm{~ms}$)	
	Current capacity 115 VDC	A	Ohmic load 0.5 A maximum (switching current $\leqslant 1.5 \mathrm{~A}$), inductive load 0.15 A maximum ($\mathrm{LR} \leqslant 40 \mathrm{~ms}$)	
	Current capacity VAC	A	2 A maximum (switching current $\leqslant 1.5 \mathrm{~A}$) $\cos \varphi=1,1$ A maximum $\cos \varphi=0.5$	2 A per point, 8 A per group, 16 A per module
	Leakage current	mA	< 1 @ 230 VAC	-
	Error indication		None	
	Response time	ms	10 @ 60 Hz Off to On, 10 @ 60 Hz On to Off	
	Max. number of switching circuits		$>30 \times 10^{6}$ (mechanical), > $\times 1 \times 10^{5}$ (inductive load with external protection circuit)	
	Protection against short circuit and overload		None	Varistor in parallel with each contact
Potential isolation	Input to Input		None	
	Output group to output Group	V rms	None	1780 AC
	Input to output group	V rms	None	1780 AC
	Field to communication interface	V rms	500 AC	
Fusing	Internal		None	
	External operating voltage		315 mA fast-blow	4 A fast-blow
	External input voltage		max. 4 A fast-blow	None
	External output voltage		According to the supply of the connected actuators not to exceed 8 A slow-blow/group	None
Power dissipation	Typical	W	5.5	
	Maximum	W	8.5	
Agency approvals			UL, C€, CSA	UL, C€, CSA, FM Class I, Div. II

Description: page 12	References: page 19	Dimensions, mounting: pages 20	Connections: pages 21 to 25
Schneider Electric		(菓 Telemecanique	

Characteristics of discrete I/O bases (continued)			
Type of base unit			170ADM69051
Number of points	Inputs		1×10
	Outputs		1×8
Operating voltage		VAC	120 (47 to 63 Hz)
Internal current		mA	160 (@ 120 VAC)
Inputs	Voltage	VAC	120
	Signal type		True high
	On voltage minimum	VAC	74
	Off voltage maximum	VAC	20
	Input current	mA	6.0 minimum at state 1, 2.6 maximum at state 0
	Input voltage range	VAC	74 to 132
	Input resistance	k Ω	4
	Response time	ms	Maximum 1/2 $\times 1 / \mathrm{f}$ Off to On, maximum 1/2 $\times 1 / \mathrm{f}$ On to Off
Outputs	Voltage	VAC	120 to 132 (@ 47 to 63 Hz)
	Type		Triac
	Current capacity		0.5 A per point maximum, 30 mA per point minimum, 2 A per group, 4 A per module
	Leakage current	mA	< 1.3 (@120 VAC)
	Signal type		True High
	On state voltage drop	VAC	<1.5 (@ 0.5 A)
	Error indication		None
	Response time	ms	$1 / 2 \times 1 / f$ maximum from state 0 to state $1,1 / 2 \times 1 / f$ maximum from state 1 to state 0
	Maximum switching cycles		3000 hr for 0.5 A inductive load
Potential Isolation	Input to input		None
	Output group to output group		None
	Input to output group		None
	Field to communication interface	Vrms	1780 AC
Power dissipation	Typical	W	6
	Maximum	W	8
Protection	Internal fuses	A	2×2.5 slow-blow fuses
Agency approvals			UL, C€, CSA

Description: page 12	References: page 19	Dimensions, mounting: pages 20	Connections: pages 21 to 25
18		(华 Telemecanique	

170AD/00000

170ADO-0000

170XTS00200

170XTS00401

170XTS00801

170XTS00601

Discrete input bases					
Type of current		Modularity (no. of points)	Conformity EC 1131-2	Reference	Weight kg
DC	24 V	16 (1×16)	Type 1	170 ADI34000	0.190
		$32(2 \times 16)$	Type 1	170ADI35000	0.200
AC	120 V	16 (2×8)	Type 2	170 ADI54050	0.284
	230 V	16 (2 x 8)	Type 2	170ADI74050	0.284
Discrete output bases					
Type of current	Output voltage	Modularity (no. of points)	Current per output	Reference	Weight kg
DC solid state protected	24 V	16 (2×8)	0.5 A	170ADO34000	0.210
		$32(2 \times 16)$	0.5 A	170ADO35000	0.210
DC/AC relay form "C"	$\begin{aligned} & 5 \ldots 24 \text { VDC } \\ & 24 \ldots . .230 \text { VAC } \end{aligned}$	6 isolated	5 A	170ADO83030	0.260
$\overline{\mathrm{AC}}$ triac protected, 1 fuse per group	120 V	$8(2 \times 4)$	2 A	170ADO53050	0.320
		16 (2x8)	0.5 A	170ADO54050	0.284
	230 V	$8(2 \times 4)$	2 A	170ADO73050	0.320
		16 (2x8)	0.5 A	170ADO74050	0.28

Discrete I/O bases						
Type of output current	Input voltage	Output voltage	Modularity		Reference	Weight kg
			Input	Outputs, current		
DC solid state	24 VDC Type 1+	24 VDC protected	$16 \mathrm{I}(1 \times 16)$	$16 \mathrm{O}(2 \times 8) 0.5 \mathrm{~A}$	170ADM35010	0.200
			16 I , fast (1 $\times 16$)	$16 \mathrm{O}(2 \times 8) 0.5 \mathrm{~A}$	170ADM35011	0.200
			$16 \mathrm{I}(1 \times 16)$	$16 \mathrm{O}(2 \times 8) 0.5 \mathrm{~A}$	170ADM35015	0.200
			16 I , wiring check (1×16)	$\begin{aligned} & 12 \mathrm{O}(1 \times 8 \text { and } 1 \times 4) \\ & 0.5 \mathrm{~A} \end{aligned}$	170ADM39010	0.260
			$16 \mathrm{I}(4 \times 4)$	$8 \mathrm{O}(2 \times 4) 2 \mathrm{~A}$	170ADM37010	0.220
DC relay	12... 60 VDC	12... 60 VDC	$16 \mathrm{I}(1 \times 16)$	$16 \mathrm{O}(1 \times 16) 0.5 \mathrm{~A}$	170ADM85010	-
$\overline{A C}$ or DC relay	$\begin{aligned} & 24 \text { VDC } \\ & \text { Type 1+ } \end{aligned}$	$\begin{aligned} & \text { 24/230 VAC } \\ & 20 / 115 \text { VDC } \end{aligned}$	10 l ($\times 10$)	$8 \mathrm{O}(2 \times 4) 2 \mathrm{~A}$	170ADM39030 (1)	0.260
					170ARM37030 (2)	0.260
$\overline{\text { AC triac }}$	$\begin{aligned} & 100 \ldots 120 \\ & \text { VAC } \\ & \text { Type } 2 \end{aligned}$	120 VAC	10 l ($\times 10$)	$8 \mathrm{O}(1 \times 8) 0.5 \mathrm{~A}$ protected by 1 fuse	170ADM69051	0.220

Accessories				
Description	Composition	Type of connection	Reference	Weight kg
Terminal blocks for I/O base connection Set of 3 connectors	1 row	Screw	170XTS00100	-
		Spring	$170 \times$ TS00200	-
Bus Bar	3 rows	Screw	170XTS00401	-
		Spring	170XTS00301	-
	2 rows	Screw	170XTS00501	-
		Spring	170XTS00801	-
	1 row	Screw	170XTS00601	-
		Spring	170XTS00701	-
Cable grounding rail	Used to connect the cable shielding	-	CER001	-
High vibration environment clips	Kit containing 5 sets of clips	-	170XTS12000	-
Dummy base unit	Used to prewire the I/O base units Requires screw or spring connection terminals		$170 \mathrm{BDM09000}$	-
Discrete input simulator	16 channels, 24 VDC	-	170BSM01600	

Replacement parts

Description	Use	Reference	Weight kg
Sheets of labels	10 front labels for Momentum modules	170XTS10000	-
Cable coding part kit	For screw or spring connection terminals	$\mathbf{1 7 0 X C P 2 0 0 0 0}$	

Description: Characteristics: page 12 pages 13 to 18	Connections: pages 21 to 25	
Schneider Electric		(华 Telemecanique

Dimensions, mounting, connections

Modicon Momentum automation platform
Discrete I/O bases

Dimensions, mounting
170ADe, rail or panel mounting

(1) 2 holes for M4 screws, for panel mounting

(1) Equipment or enclosure

Connections of discrete input bases 170ADI34000
Example of external wiring of 2,3 and 4 -wire sensors

Group of channels

Internal wiring

170ADI54050
Example of external wiring of 2 and 3-wire sensors

Group of channels

Internal wiring

170ADI35000
Example of external wiring of 2 and 3 -wire sensors

170ADI74050
Example of external wiring of 2 and 3-wire sensors

Connections of discrete output bases

170ADO34000

Example of external wiring of 2 and 3-wire actuators

Group of channels

Internal wiring

170ADO35000
Example of external wiring of 2 and 3 -wire actuators

Group of channels

Internal wiring

170ADO83030
Example of external wiring

Description:	Characteristics:	References:	page 19
pages 12	pages 13 to 18		page 20

Connections of discrete output bases (continued)

170ADO53050 / ADO54050

Example of external wiring of 2 and 3-wire actuator

Internal wiring

170ADO73050 / ADO74050
Example of external wiring of 2 and 3 -wire actuators

Group of channels
Internal wiring

Connections of discrete I/O bases

170ADM35010 / ADM35011 / ADM35015

Example of external wiring of a 2-wire sensor/actuator

Group of channels

Internal wiring

Example of external wiring of a 4-wire sensor activated by an output

Group of channels
Internal wiring

Internal wiring

Example of external wiring of a 3-wire actuator with wiring check

Group of channels

Internal wiring

Example of external wiring of a 4-wire sensor/2-wire actuator

Description:	Characteristics:	References:	Dimensions, mounting:
pages 12	pages 13 to 18	page 19	page 20

Modicon Momentum automation platform
 Discrete I/O bases

Connections of discrete I/O bases (continued)

170ADM39010

Example of external wiring of 2-wire sensor/actuator

170ADM37010

Example of external wiring of 2 and 4 -wire sensors/2-wire actuator

170ADM37010 (continued)
Example of external wiring of 3-wire actuator with wiring check

Internal wiring

Special external wiring, the output activates the sensor

Description:	Characteristics:	References:	Dimensions, mounting:
pages 12	pages 13 to 18	page 19	page 20

Connections of discrete I/O bases (continued)

170ADM85010

Example of external wiring of:
ㅁ 4-wire sensor
ㅁ 2-wire actuator

- 3-wire actuator with wiring check
- 2-wire sensor activated by output

Group of channels

Internal wiring
(1) Fast-blow fuse: -- $12 \mathrm{~V}: 630 \mathrm{~mA},-24 \mathrm{~V}: 315 \mathrm{~mA},-48 \mathrm{~V}: 200 \mathrm{~mA}$.
(2) Fast-blow fuse.

170ARM37030
Example of external wiring of 4-wire sensor/3-wire actuator

170ADM39030

Example of external wiring of 3 or 4 sensor/3-wire/actuator

170ADM69051
Example of external wiring of 4-wire sensor/2 and 3-wire actuators

Description:	Characteristics:	References:	Dimensions, mounting:
pages 12	pages 13 to 18	page 19	page 20

Protection	
Number in words	\ln
Out	

Fail states
Type of communicating module

[^0]
24 VDC

24 VDC analog input bases

14 bits + sign bipolar 15 bits unipolar

$\frac{\text { None }}{\frac{500 \text { VDC, } 1 \text { min }}{} 1780 \text { VAC, } 1 \text { min }}$

Polarity inversion

$\frac{8 \text { words in }}{2 \text { words out }}$
$\frac{16 \text { words in }}{4 \text { words out }}$

$$
\frac{4 \text { words in }}{4 \text { words out }}
$$

Presentation

The Momentum analog input bases enable acquisition of various analog values encountered in industrial applications, including:
■ Standard high level ($\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 1-5 \mathrm{~V}, 4-20 \mathrm{~mA}, \pm 20 \mathrm{~mA}$).

- Low level $(\pm 25 \mathrm{mV}, \pm 100 \mathrm{mV})$.
- Thermocouples (B, E, J, ...).
- Temperature probes (Ni ..., Pt ...).

The analog output bases are used to control analog field devices such as variable speed drives, proportional control valves, etc. The current or the voltage is proportional to the digital value defined by the user program. The outputs can be configured so that when the program stops the outputs either reset to zero or hold the last value received. This feature is useful during debugging since, if the outputs are set to "Hold", the operation of the analog field devices is not disturbed every time the program stops.

In order to cover a wide range of applications, Momentum I/O bases offer the following functions in addition to A/D or D/A conversion:
■ Choice of input/output ranges (voltage, current, thermocouple, temperature probes).

- Selection of number of channels used.
- Cold junction compensation for thermocouple modules.

■ Broken wire detection (170AAI03000, 170AAI14000, 170AAI52040).

Description

170Aee analog I/O base units comprise on the front panel:
1 Internal interface connector for the communication module or processor module.
2 A locking and earth contact for the communication module or processor module.
3 LED status indicators (the number of indicators will depend on the number of channels).
4 Two connectors for the removable terminal blocks.
5 An grounding screw.
6 A slot for the power strip
7 Two screw holes for panel mounting.
8 A protective cover.

Connectors to be ordered separately:

■ removable screw or spring terminal blocks 170XTS00e00.
■ 1 to 3-row screw or spring bus bar 170XTS00@ 01.

Characteristics:	References:	Connections:
pages 29 to 33	pages 34 and 35	pagensions:

Analog I/O bases

Characteristics of analog input bases

Type of base units			170 AAI03000				
Number of inputs			1×8 differential inputs				
LEDs			Ready (green)				
Format of data			Full 16 bits signed (2's complement)				
Protection	Base and actuators		Polarity inversion				
Ranges			$\pm 10 \mathrm{VDC}$	± 5 VDC	4... 20 mA	$\pm 20 \mathrm{~mA}$	1... 5 VDC
	Input impedance	k Ω	> 0.1000	> 0.1000	250	250	>0.1000
	Error at $25^{\circ} \mathrm{C}$	\%	0.27	0.21	0.27	0.32	0.13
	Error at $60^{\circ} \mathrm{C}$	\%	0.32	0.26	0.38	0.41	0.19
	Resolution		14 bits + sign bipolar 15 bits unipolar				
Conversion times		ms	12 ms max. for 8 input channels (1.33 ms per input channel +1.33 ms)				
Error indication			None				
Isolation	Channel to channel	VDC	± 200 for 1 minute				
	Field to ground	VDC	500 for 1 minute				
	Communication adapter to ground	VAC	500 for 1 minute				
Common mode rejection	Channel to ground		250 VAC @ 47 to 63 Hz or 100 VDC				
Crosstalk between channels		dB	$\geqslant 80$				
External power requirement	Nominal	VDC	24				
	Limit values	VDC	20.4 to 28.8				
	Current	mA	< 382 @ 24 VDC				
EMC for industrial environment	Immunity		IEC 1131 surge on auxiliary power supply 2 kV				
	Emissions		EN 50081-2				
	Approvals		UL, CSA, C ϵ				

References:	Dimensions:	Connections:
pages 34 and 35	page 35	pages 36 and 37

Characteristics of analog input bases (continued)

References : pages 34 and 35	Dimensions: page 35	Connections: pages 36 and 37	
30		(华 Telemecanique	Schneider Electric

Characteristics of analog output bases

Type of base units			170AAO12000		170AAO92100	
Number of outputs			1×4			
Format of data			Full 16 bits signed (2's complement)			
Protection	Base and actuators		Polarity inversion			
Ranges			$\pm 10 \mathrm{~V}$	0... 20 mA	$\pm 10 \mathrm{~V}$	4... 20 mA
	Load impedance	k Ω	1 minimum	0.6 maximum	1 minimum	0.6 maximum
	Capacitive load	$\mu \mathrm{F}$	<1			
	Error at $25^{\circ} \mathrm{C}$	\%	0.2 PE	0.3 PE	0.2 PE	0.4 PE
	Error at $60^{\circ} \mathrm{C}$	\%	0.25 PE	0.4 PE	0.25 PE	0.5 PE
	Temperature drift ($60{ }^{\circ} \mathrm{C}$)	\%。	$10 \mathrm{PE} /{ }^{\circ} \mathrm{C}$	$30 \mathrm{PE} /{ }^{\circ} \mathrm{C}$	$10 \mathrm{PE} /{ }^{\circ} \mathrm{C}$	$30 \mathrm{PE} /{ }^{\circ} \mathrm{C}$
	Resolution		12 bits + sign			
	Update time	ms	<2			
Full scale			$\begin{aligned} & 10 \mathrm{~V} \text { in the range of } \pm 10 \mathrm{~V} \\ & 2 \mathrm{~mA} \text { in the range of } 0 \ldots 20 \mathrm{~mA} \\ & \hline \end{aligned}$			
Fail State			Hold, reset to zero, reset to full scale			
Potential isolation	Channel to channel		None			
	Base power supply and ground	VDC	500 for 1 minute			
	Channels to ground	VAC	500 for 1 minute			
	Out protections		Short-circuits in the voltage circuits, open in current polarity inversion			
	Base power	V	± 30 (voltage or current output)			
Common mode rejection		VAC	250 @ 47 to 63 Hz or 250 DC channel to ground			
Operating voltage		VDC	24			
Internal current	Base	mA	530 @ 24 VDC			
	Actuators	mA	150 @ 24 VDC			
Power dissipation	Typical	W	5.6			
	Maximum	W	8.5			
Internal fusing		A	2, slow-blow			
Agency approvals			UL, C€, CSA			

References:	Dimensions:	Connections :
pages 34 and 35	page 35	pages 36 and 37

References : pages 34 and 35	Dimensions: page 35	Connections: pages 36 and 37	
32		(5) Telemecanique	Schneider Electric

Characteristics of discrete and analog I/O bases (continued)				
Type of base unit			170ANR12090	170ANR12091
Number of inputs and outputs			1×6 analog inputs 2×4 discrete inputs 1×4 analog outputs 1×8 discrete outputs	
Operating voltage		VDC	24, range 19.2 to 30	
Internal current		mA	400 @ 24 VDC	
Analog inputs	Resolution		14 bit	
	Input range	VDC	0 to 10	-10 to +10
	Input type		Single-ended	
	Conversion time		0.75 ms maximum for 6 input channels	
	Conversion error		0.2 \% @ $25^{\circ} \mathrm{C}$ for 0-10 VDC inputs	
	Max input signal	VDC	15 for voltage input	
	Max temperature drift	VDC	10 inputs	
	Input resistance	$\mathrm{M} \Omega$	>1 for voltage inputs	
Discrete inputs	Voltage	VDC	24	
	Configuration		2 groups of 4 inputs	
	Signal Type		True high	
	Minimum on voltage	VDC	> 11	
	Maximum off voltage	VDC	< 5	
	Input currentMinimum On Maximum Off	mA	6	
		mA	2	
	Input voltage Range	VDC	+ 3 to + 32	
	Surge	VDC	45 peak for 10 ms	
	Response time Off to On	ms	1.2	
	On to Off	ms	1.2	
Analog outputs	Resolution		14 bit	
	Output range	VDC	0 to 10	-10 to +10
	Conversion time	ms	1.20 for all four channels	
	Conversion error		max. +0.4 \% of upper measuring range value @ $25^{\circ} \mathrm{C}$	
	Output load		$>2 \mathrm{k} \Omega$ minimum @ 0 to 10 VDC	
	Fail state		Hold or reset to zero	
Discrete outputs	Voltage	VDC	10-30 operating, 50 for 1 ms maximum	
	Type		Solid State Switch	
	Signal type		True high	
	Current capacity	A	0.25 per point, 2 per group, 2 per module	
	Leakage current	mA	0.4 @ 30 VDC	
	Surge current	A	2.5 for 1 ms	
	On state voltage drop	VDC	< 0.4 @ 0.25 A current	
	Response time Off to On	ms	1.2	
	On to Off	ms	1.05	
	Output protection		The Outputs are protected against overload and shorted-circuits	
	Output indicator		1 LED per point	
Potential isolation	Discrete input to output		None	
	Analog input to output		None	
	Analog input and output to operating voltage	VAC	500 for 1 minute.	
	Operating voltage and all inputs and outputs from ground	VAC	500 for 1 minute	
Power dissipation	Typical	W	4.0	
	Maximum	W	6.0	
Agency approvals			UL, C€, CSA	

References: pages 34 and 35	Dimensions : page 35	Connections: pages 36 and 37	
Schneider Electric		(4) Telemecanique	33

170AA/00000

170AAO•2•00

170ААМО9000

Analog input bases

Type of inputs	Number of channels	Ranges	Reference	Weight $\mathbf{k g}$
$\mathbf{1 2}$ bits + sign	16 single-ended	$\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 4-20 \mathrm{~mA}$	$\mathbf{1 7 0 A A l 1 4 0 0 0}$	0.215
$\mathbf{1 5}$ bits + sign	4, differential	Pt 100, Pt 1000, NI 100 thermocouples B, E, J, K,	$\mathbf{1 7 0 A A I 5 2 0 4 0}$	0.215
		$\mathrm{~N}, \mathrm{R}, \mathrm{S}, \mathrm{T}$		

Analog output bases

Type of outputs	Number of channels	Ranges	Reference	Weight $\mathbf{k g}$
$\mathbf{1 2}$ bits + sign	4	$\pm 10 \mathrm{~V}, 0-20 \mathrm{~mA}$	$\mathbf{1 7 0 A A O 1 2 0 0 0}$	0.215
		$\pm 10 \mathrm{~V}, 4-20 \mathrm{~mA}$	$\mathbf{1 7 0 A A O 9 2 1 0 0}$	0.215

Type		Ranges		Reference	Weight kg
Inputs	Outputs	Inputs	Outputs		
4 differential analog 13 bits + sign	$\begin{aligned} & 2 \text { analogs } \\ & 12 \text { bits } \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \\ & 1-5 \mathrm{~V} \\ & \pm 20 \mathrm{~mA} \\ & 4-20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0-20 \mathrm{~mA} \\ & \pm 10 \mathrm{~V} \end{aligned}$	170AMM09000	0.240
4 discrete	$\begin{aligned} & 2 \text { discrete } \\ & 0.5 \mathrm{~A} \end{aligned}$	24 VDC	24 VDC		
4 differential analog 13 bits + sign	2 analogs 12 bits	$\begin{aligned} & \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \\ & 1-5 \mathrm{~V} \\ & \pm 20 \mathrm{~mA} \\ & 4-20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0-20 \mathrm{~mA} \\ & \pm 10 \mathrm{~V} \end{aligned}$	170AMM09001	0.240
4 discrete	$\begin{aligned} & \text { 2 discrete } \\ & 0.5 \mathrm{~A} \end{aligned}$	12 VDC	12 VDC		
$\begin{aligned} & 6 \text { analog } \\ & 14 \text { bits } \end{aligned}$	4 analogs 14 bits	0-10 V	0-10 V	170ANR12090	0.240
2×4 discrete	$\begin{aligned} & 1 \times 8 \text { discrete } \\ & 0.25 \mathrm{~A} \end{aligned}$	24 VDC	24 VDC		
$\begin{aligned} & 6 \text { analog } \\ & 14 \text { bits } \end{aligned}$	4 analogs 14 bits	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	170ANR12091	0.240
2×4 discrete	$\begin{aligned} & 1 \times 8 \text { discrete } \\ & 0.25 \mathrm{~A} \end{aligned}$	24 VDC	24 VDC		

Characteristics:	Dimensions:	Connections:
pages 29 to 33	page 35	pages 36 and 37

References (continued), dimensions, mounting

Modicon Momentum automation platform
Analog I/O bases

$170 X T S 00100$

$170 \times T S 00200$

170XTS00401

170XTS00501

170XTS00801

170XTS00601

Accessories				
Description	Composition	Type of connection	Reference	$\begin{array}{r} \text { Weight } \\ \mathrm{kg} \end{array}$
Terminal blocks	Set of 3 connectors 1 row	Screw	170XTS00100	
		Spring	170XTS00200	
Bus Bar	3 rows	Screw	170XTS00401	
		Spring	170XTS00301	
	2 rows	Screw	170XTS00501	
		Spring	170XTS00801	
	1 rows	Screw	170XTS00601	
		Spring	170XTS00701	
Cable Grounding Rail	Used to connect the cable shielding		CER001	
High vibration environment clips	Used to prewire the Requires screw or s terminals	base units. g connection	170BDM09000	

Replacement parts			
Description	Use	Reference	Weight kg
Sheets of labels	10 front labels for Momentum modules	170XTS10000	
Set of coding and locating device	For screw or spring connection terminals	$170 \times C P 20000$	

Dimensions, mounting
170Ace
Rail or panel mounting

(1) 2 holes for M4 screws, for panel mounting.

(1) Equipment or enclosure.

Connections of analog input bases and analog output bases

170AAIO3000

Example of external wiring of 2-wire sensor
\square

Voltage input

170AAI14000
Example of external wiring of 2-wire sensor

[^1]Internal wiring

170AAO120 / 92100
Example of external wiring of 2-wire actuator

Group of channels
Internal wiring

Connections of discrete and analog bases

170AMM09000 / AMM09001

Example of external wiring of 2-wire sensor

L. External bridge

Group of channels

Internal wiring
170AMM09000 / AMM09001 (continued)
Example of external wiring of digital sensor/actuator

Example of external wiring of 2-wire actuator

Group of channels

Internal wiring

170ANR12090 / 91

Example of mixed discrete and analog I/O sensor/actuator field wiring

Group of channels

Internal wiring
(1) -- 24 V for 170 AMM 090 00, -- 12 V for 170 AMM 09001
(2) Depending on application, max 5 A.

Operating voltage
Unique features

Modularity
Output channels

Input characteristics
Discrete inputs

Output characteristics

\square

Surge	Input voltage
	Output current

Type of module

Pages

High-speed counter

24 VDC

2 independent, high-speed ($10 \mathrm{kHz}-200 \mathrm{kHz}$) counters

6 (3 per counter) True High Inputs
4 (2 per counter) True High Outputs

5 VDC differential input, 200 kHz counter; 24 VDC single-end input, 10 kHz counter
$6(2 \times 3) 24 \mathrm{VDC}$ inputs:

- voltage range, -3 to +30 VDC
- response time, 3 ms Off to On or On to Off

Two 5 VDC differential outputs min $20 \mathrm{~mA} @ 24$ VDC
4 (2 per counter) 24 VDC outputs:
- on current, 0.5 A per point, 1 A per counter
- response time: $<0.1 \mathrm{~ms}$ Off to On, $<0.1 \mathrm{~ms}$ On to Off

45 V peak for 10 ms

170AEC92000

41

120 VAC

RS 485 2- or 4-wire Modbus port

6 True High Inputs
3 True High Outputs

1 group of 6 inputs (120 VAC @ 47 to 63 Hz):

- voltage range, 0 to 132 VAC
- response time, < 12.3 ms @ 60 Hz On to Off,
$<12.5 \mathrm{~ms}$ @ 60 Hz Off to On

3 solid state switching outputs (120 VAC @ 47 to 63 Hz):

- on current, 0.5 A continuous per point, 1.5 A continuous per module
- response time: < 12.3 ms @ 60 Hz On to Off, $<12.5 \mathrm{~ms} @ 60 \mathrm{~Hz}$ Off to On

170ADM54080

41

Presentation

The Momentum specialty module I/O bases provide support for unique applications that broaden the range of the Momentum offering. The specialty modules are:
■ a 2-channel, High-speed counter module base-170AEC92000.

- a 120 VAC, 6 -point input/3-point output module base with a Modbus communication port - 170ADM54080.

High-speed counter

The 170AEC92000 high-speed counter module base features 2 independent counters, along with 6 discrete inputs and 4 discrete outputs. This base can connect directly to either 5 VDC differential or 24 VDC single-ended encoders. The base supports two operating modes:

- Incremental (up counter, down counter, and quadrature)
- Absolute (SSI up/down counter).

The high-speed counter module can be connected directly to many standard communication networks, for communicating with programmable controllers, industrial computers, and other controllers, by installing one of the snap-on Momentum communication adapters onto the base.

Input/Output module with Modbus communication port
The 170ADM54080 input/output module base has 6 discrete inputs and 3 discrete outputs for direct connection to 2 - and 3 -wire sensors and actuators, plus a Modbus communication port for connection to serial devices.

This module can also be used as the I/O base for a programmable controller, in either a standalone or distributed I/O configuration, by installing one of the snap-on Momentum M1 processor adapters.

Description

A specialty module I/O bases consists of the following components:
1 Internal interface connector for the communication module.
2 Locking and earth contact for the adapter.
3 LED status display.
4 Two connectors for the removable terminal blocks.
5 Grounding screw.
6 Grounding busbar mounting slot.
7 Mounting holes for a panel mount.
8 Protective cover for fuses (170ADM54080) or connector for the removable terminal block.

Characteristics:	References:	Connections:
page 41	page 42	page 43

Specialty module I/O bases

Characteristics				
Model No.			170AEC92000	170ADM54080
Number of I/O	Counter		2 independent	-
	Inputs		2×3 discrete	1×6 discrete
	Outputs		2×2 discrete	1×3 discrete
Discrete inputs	Operating voltage	V	24 DC	120 AC @ 47 to 63 Hz
	Input	V	-3 to + 30 DC	0 to 132 AC
		V	45 peak for 10 ms	200 AC for 1 cycle
	Input current	mA	2.5 minimum	5.5 minimum
		mA	1.2 maximum	1.9 maximum
	Switching level	V	11 DC minimum on voltage 5 DC maximum off voltage	79 AC minimum on voltage 20 AC maximum off voltage
	Response time	ms	3	<12.5 @ 60 Hz
		ms	3	< 12.3 @ 60 Hz
	Signal type		True High	
Discrete outputs	Operating voltage	V	24 DC	120 AC @ 47 to 63 Hz
	Signal type		True High	
	On state voltage drop	V	< 0.5 DC @ 0.5 A current	< 1.5 AC @ 0.5 A current
	Fault sensing		Overload and short circuit	1 fuse, 2.5 A @ 250 VAC
	Current capacity	A	0.5 per point	0.5 continuous per point
		A	1 per counter	-
		A	2 per module	1.5 continuous per module
	Current	mA	< 1 @ 24 VDC	1.9 @ 120 VAC
		mA	5 A for 1 ms	30 minimum
	Response time	ms	<0.1	< 12.5 @ 60 Hz
		ms	< 0.1	< 12.3 @ 60 Hz
Counter inputs	Incremental counters		Up counter, down counter, quadrature	-
	Absolute SSI counter		Up/down counter with 4 sub-modes	-
	Input signals	VDC	5 differential input 24 single-ended input	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$
	Counter speed (max)	kHz	200, differential inputs 10, single-ended inputs	$-$
	Counter capacity		24 bits plus sign per counter	-
	Counter configuration		Via communication adapter (8 input words, 8 output words)	-
Modbus port	Type		-	RS-485, 2- or 4-wire
	Communication rates	bit/s	-	19200 and 9600
	Format		-	8-bit RTU / 7-bit ASCII
	Modbus address range		-	0 to 247
	Time-out	ms	-	150 after transmission
Current consumption		mA	280	125 @ 120 VAC
Agency approvals			UL, C€, CSA	

References:	Connections:
page 42	page 43

| References | Modules
 Description | Characteristics | Reference | Weight
 kg |
| :--- | :--- | :--- | :--- | :--- | :--- |

Accessories: Terminal blocks, bus bar, cable grounding rail and discrete input simulator, see page 19.

Connections

170AEC92000
A 2-encoder and input/output field wiring example

170ADM54080

A Modbus device and input/output field wiring example

Characteristics:	References: pages 41

Communication adapters for Ethernet TCP/IP

Ethernet TCP/IP	
Transparent Ready Class	B20
A10	

IEEE 802.3 standard	
CSMA-CD	
$10 \mathrm{M} \mathrm{bit/s}$	$10 / 100 \mathrm{Mbit} / \mathrm{s}$

Medium	Type
Topology	
Redundancy	

Pages

64

1000 m per segment

170ENT11002

170ENT11001

49

Communication adapters for INTERBuS

Communication adapter for Profibus DP bus

InTERBus	INTERBUS I/O bus
SUPI 3	SUPI 2

DIN 19258 standard	
Master/Slave	
500 K bit/s	Fiber optic
Twisted pair	
Ring	
No	

40 per installation remote bus module (up to 254 bus terminal modules)

57

EN 50170 standard
Master/Slave
12 Mbit/s...9.6 K bit/s depending on length

Twisted pair
Multidrop, ring
No

170DNT11000

59

DeviceNet

Multidrop
Multidrop
No

64

500 m with repeaters

170LNT71000

Applications

Communication adapters for Modbus Plus network

 IEC Data Format984 Data Format

Modbus Plus

Modbus Plus
Token bus
1 Mbit/s

Twisted pair	
Multidrop	
No	Yes

32
 64 (without repeaters)

5000 m with repeaters

170PNT11020
170PNT16020
170NEF11021

Communication adapters for Modbus Plus network 984 Data Format

Communication adapters for Fipio bus

 for TSX Series 7 and April 5000

	Fipio	
Modbus Plus	Fip standard	
Token bus	Bus managed by bus arbitrator	
$1 \mathrm{Mbit/s}$	$1 \mathrm{Mbit} / \mathrm{s}$	
Twisted pair		
Multidrop		
Yes	No	
32		
64 (without repeaters)		128
5000 m with repeater		15000 m with repeaters
170NEF16021	170FNT11000	170FNT11001
51	55	

Presentation

The Model 170ENT11002 and 170ENT11001 Ethernet communication adapters for the Momentum I/O product line provide a direct connection to Ethernet-based networks for the entire family of Momentum I/O modules. This connectivity enables communications with a full range of Ethernet TCP/IP compatible control products that includes programmable controllers, industrial computers, motion controllers, operator control stations, host computers, and other controls. This communication network provides a flexible, cost-effective solution for communicating factory floor information to various layers of an integrated manufacturing facility.

The 100BASE-TX Ethernet communication adapter, the 170ENT11001 (and the 10BASE-T adapter, the 170ENT11002) are single adapters designed to plug on to any of the Momentum Input/Output module bases, and conform to the requirements of the Ethernet communication network.

The Ethernet IP addressing scheme allows an unlimited number of Momentum I/O modules or connections on the network. Using standard Ethernet hubs, routers, and bridges, the performance and distance capability of the Ethernet network can be tailored to meet the requirements of almost any control application.

The Ethernet communication adapter uses the standard Modbus message structure and control commands over the TCP/IP protocol, which simplifies implementation by control engineers while providing information that can be communicated over standard network media to all enterprise applications.

Since Modbus on TCP/IP over Ethernet is supported by Schneider Electric's Quantum and Premium controller families, Momentum I/O can be added to existing control systems where additional I/O capacity of a distributed I/O sub-network is needed.

The Ethernet communication adapter requires connection to a BOOTP server for setting the module's IP parameters, including its own unique IP address, default gateway, and sub-net mask, all of which is stored in the communication adapter's flash memory. Schneider Electric's automation business offers BOOTP Lite Ethernet software as a free download from the Telemecanique Internet web site www.telemecanique.com.

Description

The 170ENT1100• Ethernet communication adapters comprises on the front panel:
1 Ethernet RJ45 connector for 100BASE-TX interface for 170ENT11001) or 10BASE-T interface for 170ENT11002).
2 Area for Label (label shipped with I/O base).
3 LED Status Indicators comprising for the 170ENT11002:

- Run (green), module health,
- LAN Active (green), Ethernet network status.

LED Status Indicators comprising for the 170ENT11001:

- Run (green), module health,
- 10 T (green), $10 \mathrm{M} \mathrm{bit/s} \mathrm{network} \mathrm{activity}$,
- 100T (amber), $100 \mathrm{M} \mathrm{bit/s} \mathrm{network} \mathrm{activity}$,
- ST (green), Ethernet network status.

platform

Ethernet TCP/IP communication adapters

[^2]
Presentation

Modbus Plus communication adapters for the Momentum I/O product line can be plugged into any Momentum I/O base to create a functional I/O unit on the Modbus Plus bus, and to provide a direct connection to the Modbus Plus Network for the full family of Momentum I/O modules. This connectivity enables communications with all of the Modbus Plus compatible control products - including programmable controllers, industrial computers, operator control stations, drive systems, and other controls - to provide a flexible, cost-effective solution for distributing I/O modules throughout a large area. To expand the capabilities of the Modbus Plus Network for distributed I/O applications, the communication adapters have been designed to permit up to 64 Momentum I/O modules to be connected to the network without the need for signal repeaters.

Each Momentum I/O module is an individual node on the Modbus Plus network with its address user-selected on the dual rotary switch on the front of the communication adapter. The Momentum I/O modules can be configured for the network, and assigned program reference numbers, by using either the Peer Cop function or the MSTR function block instruction in the programmable controller or the Modbus Plus configuration in an industrial computer.

There are four types of communication adapters available:
■ 170PNT11020, Single Port, IEC Data Format

- 170PNT16020, Redundant Port, IEC Data Format
- 170NEF11021, Single Port, 984 Data Format
- 170NEF16021, Redundant Port, 984 Data Format.

IEC Data Format

This version of the Momentum Modbus Plus communication adapter communicates I/O data to the programmable controller in the IEC data format, which has bit numbering 0 through 15 , right to left, within the data word (i.e., input or output number 1 is bit number 0).

984 Data Format

This version of the Momentum Modbus Plus communication adapter communicates I/O data to the programmable controller in the traditional 984 data format, which has bit numbering 1 through 16 , left to right, within the register (i.e., input or output number 1 is bit number 1).

Since Modbus Plus is supported by the Quantum and 984 controller families, Momentum I/O can be added to existing control systems where additional I/O capacity or a distributed I/O sub-network is needed, because of requirements for the control system. See page 52 for typical control systems using Momentum I/O modules on the Modbus Plus network with programmable controllers and industrial computer systems.

Modicon Momentum automation platform
 Modbus Plus communication adapters

Description

Each 170 PNT/NEF communication module comprises:
1 Three indicator lights (LEDs):

- MB + ACT indicator light (green): module powered up or communicating.
- ERR A indicator light (red): communication error network A.
- ERR B indicator light (red): communication error network B.
(for redundant model).
2 A 9-way male SUB-D connector for connecting to the Modbus Plus network.
3 A 9 -way male SUB-D connector for a redundant Modbus Plus network.

4. A slot for an identification label (supplied with all I/O sub-bases).

5 Two switches for coding the slave address on the bus.

Characteristics				
Type of module	170PNT11020	170PNT16020	170NEF11021	170NEF16021
Communication network	Modbus Plus			
Master PLC on the network	Quantum, Premium	Quantum	Quantum, Compact 984	
Structure	Industrial			
	No	Yes	No	Yes
	Multi-drop, devices connected using extension cable or tap-off cable			
	$5,000 \mathrm{~m}$ (6000 ft)) maximum with repeaters			
	Token bus			
Transmission Bit rate	$1 \mathrm{M} \mathrm{bit/s}$			
Medium	Twisted pairs			
Data Format	IEC Data Format		984 Data Format	
Number of Momentum devices Per segment	31 connection points			
Maximum	63 for all segments			
Power source	Power supply on-board the I/O base			
Behavior in the event of a communication error	Discrete I/O: forcing to state 0 Analogue I/O: configurable (maintain value, fallback to 0 or full scale value)			
Services	Configuration: Peer cop and MSTR function block, "peer-to-peer" mode			
Agency approvals	UL, C€, CSA, FM Class I, Div. II		UL, c¢, CSA	

Network topology

Momentum I/O modules in a distributed control system

Momentum I/O modules with Modbus Plus double cable in a distributed and redundant control system

1 140CRA21110: Quantum Modbus Plus drop interface and power supply, singlecable support, 115/230 VAC.
2 140NOM21200: Quantum Modbus Plus head-end interface, redundant support, twisted pair cable.
3 140NOM25200: Quantum Modbus Plus Head-end Interface, single-cable support, fiber optic cable.
4 170PNT11020 or 170NEF11021: Momentum Modbus Plus communication adapter, non-redundant network.
5 170PNT16020 or 170NEF16021: Momentum Modbus Plus communication adapter, redundant network.
6 416NHM21233: Modbus Plus type III PCMCIA Card, single port; Or 416NHM21234: Modbus Plus type III PCMCIA Card, single port, "plug and play".
7 990NAD23000: Modbus Plus tap, IP 20.
8 990NAD23010: Modbus Plus tap, IP 65.
9 990NAD21110 / 30: Modbus Plus drop cable (lengths: 2 or 4 or 6 m).
10 990NAD21510: Modbus Plus ruggedized tap programming Cable, 3.05 m .
11 170MCI 020 / 021ee: Modbus Plus RJ45 cable (lengths: $0.25,1,3$ or 10 m).
12170XTS02000: Modbus Plus "T" connector (DB9 base).
13490NAA2710e: Sandard Modbus cable (lengths: 30, 150, 300, 450 or 1500 m).
14 990NAD23011: Modbus Plus ruggedized tap terminators.
15170XTS02100: Modbus Plus RJ45 terminator.
16416NHM30032: Modbus Plus PCI PC adapter Card, dual ports.

Characteristics:	References:
page 51	page 53

Modbus Plus communication adapters

(1) Item, see page 52.

Characteristics:
page 51
Schneider Electric

Presentation

The Fipio communication adapter can be plugged into a Momentum I/O base to create a functional I/O unit on the Fipio bus, and to provide a direct connection to the Fipio Network for the full family of Momentum I/O modules. This connectivity enables the Momentum I/O to be used along with other Fipio compatible control devices, including industrial computers, operator control stations, drive systems, and other controls, to provide a flexible, time-critical, cost-effective solution for distributing I/O modules throughout a large area.

There are two types of communication adapters available:

- 170FNT11001 (1) for a Fipio bus connected to a Premium PLC.
- 170FNT11000 for a Fipio bus connected to TSX 7 series CPUs or APRIL 5030 and 5130 CPUs.

Each Momentum I/O module is an individual node or device on the Fipio network with its address set by the user on the dual rotary switch on the front of the communication adapter. Fipio is a network that can have up to 128 slave devices. The Fipio network's distance and communication capabilities range from 1000 meters (3330 ft .) to 15000 meters (45000 ft .) with repeaters over twisted pair cable at a data rate of $1 \mathrm{M} \mathrm{bit} / \mathrm{s}$.
(1) The Fipio communication adapter 170FNT11001 does not support the 170ADM54080 I/O base.

Description

The 170FNT1100e communication module comprises:
1 Three indicator lights (LEDs):

- Ready indicator light (green): module powered up or in service.
- COM indicator light (yellow): data being sent or received.
- ERR indicator light (red): faulty device.

A 9-way male SUB-D connector for connecting to the Fipio bus
3 A slot for an identification label (supplied with all I/O sub-bases).
4 Two switches for coding the slave address on the bus.

Fipio communication adapters

(1) Does not support the 170ADM54080 I/O base.

Modicon Momentum automation platform

InTERBus communication adapters

Presentation

The Momentum InTERBuS communication adapter provides a direct connection to the InTERBus Network for the full family of Momentum I/O modules. This connectivity enables Momentum I/O to be used in open architecture control systems that utilize either a programmable controller or industrial computer as the network master. In these applications, INTERBus serves as the communication network that connects Momentum I/O modules, along with other INTERBus compatible control devices, for the communication of input and output information with a single master controller.

There are three types of InTERBUS adapters available:
■ 170INT11000, twisted pair media, SUPI 2.

- 170INT11003, twisted pair media, SUPI 3, supports G4 diagnostic.

■ 170INT12000, fiber optic media, SUPI 3, supports G4 diagnostic.

The INTERBus communication adapter is designed to plug on to any of the Momentum Input/Output module bases, thus allowing the I/O module to be accessed over the InterBus Communication Network. Each Momentum I/O module is an individual node or device on the INTERBus network with its address set either by its physical location on the network, or by menu-driven software that is available with some InterBus master devices. InterBus is a cost-effective method of distributing I/O modules throughout large plant areas. The figure below illustrates a typical control system using Momentum I/O modules on the INTERBus network, with a Quantum PLC programmable controller as the network master.

Network Topology

Description

The 170INT1100• INTERBus communication adapters comprise on the front panel:
1 Two 9-Pin SUB-D connectors for connection to the INTERBus bus.
2 Area for Label (label shipped with I/O base).
3 LED Status Indicators comprising for 170INT11000 / 11003 only:

- UL (green), logic power check, for 170INT11003 only.
- BA (green), bus enabled.
- RC (green), remote bus check.
- RD (yellow), remote bus disabled.
platform
InterBus communication adapters

Characteristics						
Model No.		170 INT11000	1701 NT11003		170 INT12000	
Communication network		InterBus, l/O bus	InterBus			
Communication rate	K bit/s	500				
Number of nodes (devices)		Up to 254 devices				
Media		Twisted Pair			Fiber Optic	
Distance m (ft.)	m (ft.)	Up to 12800 (41984 ft.), 400 (1312 ft.) between two nodes				
Connectors		2-9 Pin "D" connectors				
Error checking		CRC-16 error check				
Error and fail states		Fail safe				
Addressing		Physical location or software				
Mode of operation		Master-Slave, continuous shift register				
Topology		Ring				
InterBus generation		SUPI $2 \times$ SUPI 3				
Packaging		Standard Momentum communication adapter enclosure - IP 20 environment				
Indicator lights		Diagnostic and status light standard				
Power source		Power supply on board the I/O base				
Agency approvals		UL, C€, CSA, FM Class I, Div. II			UL, C€, CSA	
References						
Modules						
	Description		Media	Generation	Reference	kg
$=$	InterBu	communication	Twisted Pair	SUPI 2	1701 NT 11000	0.070
	adapter			SUPI 3	$1701 N T 11003$	0.070

170INT12000

Accessories			
Description	Length	Reference	Weight kg
Branch Interface, Twisted Pair, SUPI 3	-	170BNO67101	-
InterBus Connector Kit, sockets/pins, 9-pin with male and female connectors for remote bus cable	-	170XTS00900	-
InterBus Cable (with small connectors)	$\begin{aligned} & 11 \mathrm{~cm} \\ & (0.36 \mathrm{ft} .) \end{aligned}$	170MCI00700	-
InterBus Cable low-profile connector	$\begin{aligned} & 100 \mathrm{~cm} \\ & (3.3 \mathrm{ft} .) \end{aligned}$	170MCI10001	-
InterBus cables	$\begin{aligned} & \hline 100 \mathrm{~m} \\ & (330 \mathrm{ft} .) \end{aligned}$	TSXIBSCA100	-
	$\begin{aligned} & 400 \mathrm{~m} \\ & (1312 \mathrm{ft} .) \end{aligned}$	TSXIBSCA400	-
	By the meter	KAB3225LI	-
Momentum front label replacement (set of 10)	-	170XCP10000	-
InterBus User Guide	-	See page 97	

Presentation

The Model 170DNT11000 Profibus DP Communication Adapter for the Momentum I/O product line provides a direct connection to the Profibus DP Communication Network for the full family of Momentum I/O modules. This connectivity enables the Momentum I/O to be used in open architecture control systems with other Profibus DP compatible control products, including programmable controllers, industrial computers, operator control stations, drive systems, and other controls, to provide a flexible, cost-effective solution for distributing I/O modules throughout a large area.

The Profibus DP communication adapter is a single package that is designed to plug on to any of the Momentum Input/Output modules base, thus allowing the I/O module full access to the Profibus DP Communication Network. Each Momentum I/O module is an individual node on the network, with its address user-selected on the dual rotary switch on the front of the communication adapter. The figure below illustrates a typical control system using Momentum I/O modules on the Profibus DP network with programmable controllers and industrial computer systems.

The Profibus Configuration File is required for the configuration of the Momentum I/O Modules on the Profibus DP network. This file contains the Profibus PNO Identnumber for all of the Momentum I/O modules, and is available at no charge to all users as a download over the Internet from the Schneider Electric web page.

Network Topology

[^3]Characteristics

Accessories			
Description	Length	Reference	Weight kg
Device Master File	-	(1)	-
Profibus DP cable	100 m (328 ft.)	TSXPBSCA100	-
	400 m (1312 ft.)	TSXPBSCA400	-
	By the meter	KABPROFIB	-
Profibus DP connector with Terminator	-	490NAD91103	-
Profibus DP in-Line Connector	-	490NAD91104	-
Profibus DP connector with Programming Port	-	490NAD91105	-
Momentum front label replacement (set of 10)	-	170XTS10000	-

(1) The Profibus device Master File (381SWA00000) is supplied with the User Guide 870USE0040•, or can be downloaded from the Telemecanique website at www.telemecanique.com.

Presentation

The Model 170LNT71000 DeviceNet Communication Adapter for the Momentum I/ O product line provides a direct connection to the DeviceNet Communication Network for the full family of Momentum I/O modules. This connectivity enables the Momentum I/O to be used in open architecture control systems with other DeviceNet compatible control products, including programmable controllers, industrial computers, operator control stations, drive systems, and other controls, to provide a flexible, cost-effective solution for distributing I/O modules throughout a large area.

The DeviceNet communication adapter is a single package that is designed to plug on to any of the Momentum Input/Output module bases, thus allowing the I/O module full access to the DeviceNet Communication Network. Each Momentum I/O module is an individual node on the network with its address user-selected on the dual rotary switch on the front of the communication adapter.

The adapter complies with the Open DeviceNet Vendor Association (ODVA) specification Release 2.0 for network communication protocol and data transfer. Current information about the ODVA specification can be obtained at the ODVA Web site: http://www.odva.org.

Electronic Data Sheet Disk

An Electronic Data Sheet (EDC) disk is included with the DeviceNet Adapter's user guide (reference 870USE10400). It supplies the application software parameters for setup of each I/O base. Each file's format on the disk complies with the ODVA specification for DeviceNet I/O module EDS parameters. Updated EDS files are available for downloading from the Customer Support areas of the Schneider Automation Web Site and Bulletin Board service.

Description

The 170LNT71000 DeviceNet Communication Adapter comprises on the front panel:
1 LED status indicators comprising:

- PWR (green), power is present from I/O base
\square MNS (green/red), adapter is communicating on network
- IO (green/red), I/O is active, no faults.

2 DeviceNet connector.
3 Area for label (label shipped with I/O base).
4 Rotary switches for slave addresses.

Modicon Momentum automation platform
 DeviceNet communication adapter

Characteristics

Model No.		170LNT71000			
ODVA compliance		With ODVA Specification Release 2.0			
Communication rates \quad K bit/s		Supports 125/250/500 standard DeviceNet baud rates			
Network power loading		Operational from 1 to 25 VDC, 110 mA maximum, 75 mA typical			
Number of nodes		Up to 64 nodes			
Media		Twisted Pair			
Distance	m (ft.)	Up to 500 (1640), depending on communication rate			
Connectors		5-pin male connector with 5 mm pin-to-pin spacing			
Error checking		CRC-16 error check			
Error and fail states		Fail safe			
Addressing		Switch selectable			
Mode of operation		CSMA/CA, master-slave, peer-to-peer			
Topology		Multi-Drop Trunk			
Packaging		Standard Momentum communication adapter enclosure - IP 20 environment			
Indicator lights		Diagnostic and status light standard			
Power source		Power supply on board the I/O base			
Agency approvals		UL, C€, CSA, FM Class I, Div. II			
References					
Module					
	Description			Reference	Weight kg
	DeviceN	t Communica	pter	170LNT71000	0.070
170LNT71000	Accessories				
	Descrip	tion	Quantity	Reference	Weight kg
	DeviceN	t connector	-	170XTS06000	
	Momen replace	front label ent	Set of 10	170XTS10000	
	DeviceN adapter	t communica Jser Guide	Includes software	See page 97	

Data memory
Scan time
Clock speed

Power source

Pages

Power supply on-board the I/O bases

66

512 K bit		544 K bit			
512 K bit		512 K bit	1 M bit	512 K bit	1 M bit
18 K bit					
240 K bit		-	200 K bit	-	200 K bit
24 K bit					
$1 \mathrm{~ms} / \mathrm{K}$		$0.3 \mathrm{~ms} / \mathrm{K}$			
32 MHz		50 MHz			
8192					
Up to 2048 I/O points with Modbus Plus option adapter	80 with ProWORX 128 with Concept	Up to 204 Modbus P		$\begin{aligned} & 80 \text { with P } \\ & 128 \text { with } \end{aligned}$	

Power supply on-board the I/O bases
1 RS 232 Modbus
1 RS 485 Modbus

1 RS 232 Modbus $1 \mathrm{I} / \mathrm{O}$ bus

Compatible

171CCC78010 171 CCC76010
67

M1E processor adapters

1 M bit

200 K bit

Presentation

The Momentum M1/M1E processor adapters are based on the Modicon 984 family of products. You can mount these Adapters on Momentum I/O Bases to provide intelligence to the I/O. The processor adapter can quickly and independently solve logic, control its own local I/O (discrete or analog), and communicate to other control entities through one of a number of Momentum communication options. The processor adapter can turn an ordinary I/O Base into a PID controller or high-speed logic solver.
You can create your own controller from a number of different bases, and with other Momentum options, network your local logic solvers together into an intelligent subsystem as part of a larger Modicon application, or into a standalone, integrally networked system with local controllers with extended I/O. A controller can be added to the different bases and combined with other Momentum options, which can then be networked together in an intelligent subsystem as part of a larger Modicon application. The Momentum I/O Base can be made a standalone, integrally networked system using local controllers with extended I/O.
The Momentum M1/M1E processor adapters are meant to stand alone, be mounted on a single Momentum I/O Base (with its own extended Momentum I/O connected to the I/O Bus Port on 171CCS76000 processor adapter), or be mounted together with one of a variety of Momentum Option Adapters, providing different network capabilities, a time-of-day clock, and a battery back-up system. The built-in flash memory is used to store the executive, allowing for convenient field upgrades of the operating system. The flash memory can also be used to back up your applications, creating a local copy of your program to be loaded back into RAM, thus providing original program file integrity. On 171CCS78000 processor adapter, the RS 485 port can be used to connect to dedicated devices such as an operator interface panel or a marquee, or used in a master/slave RS 485 network to connect to multiple devices. The processor adapters can be programmed with Modsoft version 2.5 or greater, Concept version 2.1 or greater, ProWORX NxT version 2.0 or greater or ProWORX 32.
The following table describes the characteristics of the Momentum M1/M1E processor adapters.

Characteristics						
Processor Adapter	RAM Memory	Flash Memory	Scan Time	Modbus Port	I/O Bus Port	IEC Executive
171 CCS70000	64 K	256 K	$1 \mathrm{~ms} / \mathrm{K}$	$1 \times$ RS 232C	-	-
171 CCS70010	64 K	256 K	$0.63 \mathrm{~ms} / \mathrm{K}$	$1 \times \mathrm{RS} 232 \mathrm{C}$	-	-
$171 \mathrm{CCS76000}$	256 K	256 K	$0.63 \mathrm{~ms} / \mathrm{K}$	$1 \times \mathrm{RS} 232 \mathrm{C}$	$1 \times \mathrm{l} / \mathrm{O}$ Bus	Compatible
171 CCS78000	64 K	256 K	$1 \mathrm{~ms} / \mathrm{K}$	$\begin{aligned} & 1 \times \operatorname{RS~232C} \\ & 1 \times \operatorname{RS} 485 \end{aligned}$	-	-
$171 \mathrm{CCC76010}$	512 K	512 K	$1 \mathrm{~ms} / \mathrm{K}$	$1 \times \mathrm{RS} 232 \mathrm{C}$	$1 \times \mathrm{l} / \mathrm{O}$ Bus	Compatible
$171 \mathrm{CCC78010}$	512 K	512 K	$1 \mathrm{~ms} / \mathrm{K}$	$\begin{aligned} & 1 \times \text { RS 232C } \\ & 1 \times \text { RS } 485 \end{aligned}$	-	Compatible
171CCC96020	544 K	512 K	. $3 \mathrm{~ms} / \mathrm{K}$	1 x Ethernet	$1 \times \mathrm{l} / \mathrm{O}$ Bus	-
171CCC96030	544 K	1 Mb	. $3 \mathrm{~ms} / \mathrm{K}$	1 x Ethernet	$1 \times \mathrm{I} / \mathrm{O}$ Bus	Supplied
171CCC98020	544 K	512 K	. $3 \mathrm{~ms} / \mathrm{K}$	$\begin{array}{\|l\|} \hline 1 \times \text { RS } 485 \\ 1 \times \text { Ethernet } \end{array}$	-	-
171CCC98030	544 K	1 Mb	. $3 \mathrm{~ms} / \mathrm{K}$	$\begin{array}{\|l\|} \hline 1 \times \mathrm{RS} 485 \\ 1 \times \text { Ethernet } \end{array}$	-	Supplied

Programming Software for Momentum

Momentum processor adapters have a number of PC programming software options available. You can program your processor Adapter via the Modbus RS 232 serial port, or with an M1E processor via Ethernet network.
If using a Modbus Plus Option Adapter in conjunction with a Processor Adapter, you can program via an SA85 card installed in a PC and connected to the same Modbus Plus network.

For more specific information, see the appropriate Momentum, ProWORX or Concept programming software literature and documentation.

Description

A typical Momentum M1/M1E Processor Adapter consists of the following components:
1 Modbus or Ethernet Port connector
2 Optional second port (Modbus or I/O bus).
3 LED indicators.
4 Fill-in Label.

Mounting

A typical system, showing a model 171CCS76000 Momentum M1 processor adapter mounted on top of a Momentum I/O Base. The processor adapter controls the I/O it is mounted on, the local I/O, and can control externally configured I/O. You can also use a Modbus Plus Option Adapter with the processor adapter to extend the system's I/O capacity

Environment						
Type of processor			171 CCS 70000	171 CCS 70010	171 CCS 78000	171CCS76000
Temperature	Operating	${ }^{\circ} \mathrm{C}$	0 to 60			
	Storage	${ }^{\circ} \mathrm{C}$	- 40 to 85			
Relative humidity			5 to 96\% (non-condensing)			
Altitude		m	2000 (6,500 ft.)			
Mechanical withstand (immunity)	To vibrations		57 to 150 Hz @ 1 gn 10 to $57 \mathrm{~Hz} @ 0.075 \mathrm{~mm}$ d.a			
	To shocks		± 15 gn peak, 11 ms , half sine wave			
Designed to meet			UL, e, CUL, FM Class 1 Div. 2, NEMA 250 Type 1, and IP 20 conforming to IEC529			
Characteristics						
Central processing unit (CPU)			x 86 based			
Word length		bit	16			
Material			Lexan			
Voltage		VDC	5.0 V (supplied by I/O Base)			
Voltage tolerance			$\pm 5 \%$ (as supplied by I/O Base)			
$\overline{\text { RFI immunity/EMI susceptibility/Electrostatic discharge }}$			Meets e mark for open equipment. Open equipment should be installed in an industry standard enclosure, with access restricted to qualified service personnel			
Di-electric strength			RS 232 is non-isolated from logic common			
Indicator lights			Run and communication active			
Power source			Power supply on-board the Momentum I/O Base			
Clock speed		MHz	20	32	20	32
Scan time		ms/K	1	0.63	1	0.63
Communication ports	1		Dedicated RS 232C Modbus			
	2		N/A		Dedicated RS 485 Modbus	I/O Bus (derivative of INTERBUS
Capacity	984 LL program memory	K	2.4			12
	IEC program memory	K	-			160
	Data memory	K	2			4
	Discrete I/O		$2048 \ln / 2048$ Out (A total of 2048 words can be configured for discrete analog I/O, any mix up to the stated limits.)			2048 In/2048 Out
	Register I/O		$2048 \mathrm{In} / 2048$ Out (A total of 2048 words can be configured for discrete and analog I/O, any mix up to the stated limits.)			4096 words total
	I/O limit		-		- I/O local on Modbus - I/O can be extended using a Modbus Plus option Adapter and Peer Cop (2048 In/Out)	8192 bits max.: - 4096 In/4096 Out on I/O Bus - I/O can be extended using a Modbus Plus option Adapter and Peer Cop (2048 In/Out)
I/O bus addressing			-			80 I/O drops with ProWORX 128 I/O drops with Concept

M1/M1E processor adapters

Environment				
Type of processor			171 CCC76010	171 CCC78010
Temperature	Operating	${ }^{\circ} \mathrm{C}$	0 to 60	
	Storage	${ }^{\circ} \mathrm{C}$	- 40 to 85	
Relative humidity			5 to 96\% (non-condensing)	
Altitude		m	2000 (6,500 ft.)	
Mechanical withstand (immunity)	To vibrations		57 to 150 Hz @ 1 gn10 to $57 \mathrm{~Hz} @ 0.075 \mathrm{~mm}$ d.a	
	To shocks		$\pm 15 \mathrm{gn} \mathrm{peak}, 11 \mathrm{~ms}$, half sine wave	
Designed to meet			UL, e, CUL, FM Class 1 Div. 2, NEMA 250 Type 1, and IP 20 conforming to IEC52	
Characteristics				
Central processing unit (CPU)			x 86 based	
Word length		bit	16	
Material			Lexan	
Voltage		VDC	5.0 V (supplied by I/O Base)	
Voltage tolerance			$\pm 5 \%$ (as supplied by I/O Base)	
RFI immunity/EMI susceptibility/Electrostatic discharge			Meets e mark for open equipment. Open equipment should be installed in an industry standard enclosure, with access restricted to qualified service personnel	
Di-electric strength			RS 232 is non-isolated from logic common	
Indicator lights			Run and communication active	
Power source			Power supply on-board the Momentum I/O Base	
Clock speed		MHz	32	
Scan time		ms/K	1	
Communication ports	1		Dedicated RS 232C Modbus	
	2		I/O Bus (derivative of INTERBUS)	Dedicated RS 485 Modbus
Capacity	984 LL program memory	K	18	
	IEC program memory	K	240	
	Data memory	K	24	
	Discrete I/O		$8192 \ln / 8192$ Out (A total of 8192 bits can be configured for discrete and analog I/O, any mix up to the stated limits)	
	Register I/O		$26048 \ln / 26048$ Out (A total of 26048 words can be configured for discrete and analog I/O, any mix up to the stated limits)	
	I/O limit		8192 bits max.: - $4096 \ln / 4096$ Out on I/O Bus - I/O can be extended using a Modbus Plus option Adapter and Peer Cop (2048 In/Out)	- I/O local on Modbus - I/O can be extended using a Modbus Plus option Adapter and Peer Cop (2048 In/Out)
I/O bus addressing			80 I/O drops with ProWORX 128 I/O drops with Concept	-

Environment				
Type of processor			171 CCC96020	171 CCC98020
Temperature	Operating	${ }^{\circ} \mathrm{C}$	0 to 60	
	Storage	${ }^{\circ} \mathrm{C}$	- 40 to 85	
Relative humidity			5 to 96\% (non-condensing)	
Altitude		m	2000 (6,500 ft.)	
Mechanical withstand (immunity)	To vibrations		57 to 150 Hz @ 1 gn 10 to $57 \mathrm{~Hz} @ 0.075 \mathrm{~mm}$ d.a	
	To shocks		± 15 gn peak, 11 ms , half sine wave	
Designed to meet			UL, e, CUL, FM Class 1 Div. 2, NEMA 250 Type 1, and IP 20 conforming to IEC52	
Characteristics				
Central processing unit (CPU)			x 86 based	
Word length		bit	16	
Material			Lexan	
Voltage		VDC	5.0 V (supplied by I/O Base)	
Voltage tolerance			$\pm 5 \%$ (as supplied by I/O Base)	
$\overline{\mathrm{RFI}}$ immunity/EMI susceptibility/Electrostatic discharge			Meets e mark for open equipment. Open equipment should be installed in an industry standard enclosure, with access restricted to qualified service personnel	
Di-electric strength			Communication port is non-isolated from logic common	
Indicator lights			RUN, Ethernet LAN active and LAN status	
Power source			Power supply on-board the Momentum I/O Base	
Flash memory		K	512	
Clock speed		MHz	50	
Scan time		ms/K	3	
Communication ports	1		Ethernet	
	2		I/O Bus (derivative of InterBus)	Dedicated RS 485 Modbus
Capacity	984 LL progra	K	18	
	IEC program	K	-	
	Data memory	K	24	
	Discrete I/O		$8192 \mathrm{In} / 8192$ Out (A total of 8192 bits can be configured for discrete and analog I/O, any mix up to the stated limits)	
	Register I/O		$26048 \ln / 26048$ Out (A total of 26048 words can be configured for discrete and analog I/O, any mix up to the stated limits)	
	I/O limit		8192 bits max.: - $4096 \mathrm{In} / 4096$ Out on I/O Bus - I/O can be extended using a Modbus Plus option Adapter and Peer Cop (2048 In/Out)	- I/O local on Modbus - I/O can be extended using a Modbus Plus option Adapter and Peer Cop (2048 In/Out)
Transparent Ready services	Class		B10	
	Web services		"Rack Viewer" access to the product description and status, and to the island diagnostics "Data editor" access to the configuration functions and variables "Web page loader" software tool for loading user Web pages	
	Ethernet TCP management		Modbus Messaging (read/write data words) I/O Scanning	
//O bus addressing			80 I/O drops with ProWORX 128 I/O drops with Concept	-

Environment				
Type of processor			171 CCC96030	171 CCC98030
Temperature	Operating	${ }^{\circ} \mathrm{C}$	0 to 60	
	Storage	${ }^{\circ} \mathrm{C}$	- 40 to 85	
Relative humidity			5 to 96\% (non-condensing)	
Altitude		m	2000 (6,500 ft.)	
Mechanical withstand (immunity)	To vibrations		57 to $150 \mathrm{~Hz} @ 1 \mathrm{gn}$10 to $57 \mathrm{~Hz} @ 0.075 \mathrm{~mm}$ d.a	
	To shocks		$\pm 15 \mathrm{gn}$ peak, 11 ms , half sine wave	
Designed to meet			UL, e, CUL, FM Class 1 Div. 2, NEMA 250 Type 1, and IP 20 conforming to IEC52	
Characteristics				
Central processing unit (CPU)			x 86 based IEC Executive	
Word length		bit	16	
Material			Lexan	
Voltage		VDC	5.0 V (supplied by I/O Base)	
Voltage tolerance			$\pm 5 \%$ (as supplied by I/O Base)	
$\overline{\mathrm{RFI}}$ immunity/EMI susceptibility/Electrostatic discharge			Meets e mark for open equipment. Open equipment should be installed in an industry standard enclosure, with access restricted to qualified service personnel	
Di-electric strength			RUN, Ethernet LAN active and LAN status	
Indicator lights			Diagnostic and status lights, standard	
Power source			Power supply on-board the Momentum I/O Base	
Flash memory		Mb	1	
Clock speed		MHz	50	
Scan time		ms/K	3	
Communication ports	1		Ethernet	
	2		I/O Bus (derivative of InterBus)	Dedicated RS 485 Modbus
Capacity	984 LL progr	K	18	
	IEC program	K	200	
	Data memory	K	24	
	Discrete I/O		$8192 \mathrm{In} / 8192$ Out (A total of 8192 bits can be configured for discrete and analog I/O, any mix up to the stated limits)	
	Register I/O		$26048 \mathrm{In} / 26048$ Out (A total of 26048 words can be configured for discrete and analog I/O, any mix up to the stated limits)	
	I/O limit		8192 bits max: - $4096 \ln / 4096$ Out on I/O Bus - I/O can be extended using a Modbus Plus option Adapter and Peer Cop (2048 In/Out)	- I/O local on Modbus - I/O can be extended using a Modbus Plus option Adapter and Peer Cop (2048 In/Out)
Transparent Ready services	Class		B10	
	Web services		"Rack Viewer" access to the product description and status, and to the island diagnostics "Data editor" access to the configuration functions and variables "Web page loader" software tool for loading user Web pages	
	Ethernet TCP managemen		Modbus Messaging (read/write data words) I/O Scanning	
I/O bus addressing			80 I/O drops with ProWORX 128 I/O drops with Concept	-

$\begin{array}{lllll}\hline \begin{array}{l}\text { M1/M1E processor adapters } \\ \text { RAM Memory } \\ \text { Communication } \\ \text { Port(s) }\end{array} & \text { Clock Speed }\end{array} \quad$ Reference $\left.\begin{array}{r}\text { Weight } \\ \text { kg (oz.) }\end{array}\right)$

Connection accessories and documentation				
Description	Type	Sold in lot of	Reference	Weight kg (oz.)
RS 232 communication cable RJ45 to RJ45	1 m (3 ft.)	-	$110 \times C A 28201$	-
	$3 \mathrm{~m}(10 \mathrm{ft}$)	-	$110 \times C A 28202$	-
	6 m (20 ft.)	-	110XCA28203	-
RS 485 cable connector T for RJ45		-	170XTS04000	-
RS 485 terminating (RJ45 resistor plugs)		2	170XTS02100	-
D-shell adapters	RJ45 to 9-pin (for AT serial port)	-	110XCA20300	-
	RJ45 to 25-pin (for XT serial port)	-	110XCA20400	-
Ground clamp	-	-	424244739	-
ConneXium cabling system	Ethernet cabling for M1E processor adapters	-	See page 78	-
Concept software -	-	-	See page 88	-
ProWORX software -		-	See page 93	-
Processor adapters user guide		-	See page 97	-

(1) Transparent Ready Class B10 (embedded standard Web server - standard Ethernet TCP/IP communication services). For more details, consult our catalog "Transparent Ready, Ethernet TCP/IP and Web technologies".

Presentation:	Description:	Characteristics:
page 64	page 65	pages 66 to 69

Modicon Momentum automation platform
 M1 processor adapters
 Power supply

An optional power supply, the 170CPS11100, is available for the Momentum product family. Normally, power for controller, option, and communication modules is obtained from the power supply built into the I/O bases modules. However, the 170CPS11100 provides a power solution for applications requiring conversion from 230 or 120 VAC to 24 VDC. The supply mounts alongside the other Momentum components on the DIN rail. The jumper-selectable, 230/120 VAC. power is input to the power supply with the use of a spring- or screw-type terminal strip; the 24 VDC power is output to the system in the same manner.

Description

A power supply consists of the following components:
1 Fill-in identifying label.
2 LED status display.
3 Input voltage (AC) terminal strip connector mounting slot.
4 Output voltage (DC) terminal strip connector mounting slot.

Characteristics

170 CPS11100

Modbus Plus option adapters

Modbus Plus

1 Modbus Plus

2 redundant Modbus Plus

9-pin D-shell

On-board, ± 13 sec./day accuracy

User-replaceable 2/3 AA Lithium

5 VDC supplied by I/O base

0 to $60^{\circ} \mathrm{C}$

5 to 95%, relative non condensing

$\pm 15 \mathrm{~g}$ peak, 11 ms , half-sine wave

10 to $57 \mathrm{~Hz} @ 0,075 \mathrm{~mm}$ d.a.

172PNN21022

172PNN26022
\square
76

Serial option adapter

General-purpose serial communications

1 software-selectable RS 232/RS 485 serial port

9-pin D-shell

On-board, $\pm 13 \mathrm{sec}$./day accuracy

User-replaceable 2/3 AA Lithium

5 VDC supplied by I/O base

0 to $60^{\circ} \mathrm{C}$

5 to 95%, relative non condensing
$\pm 15 \mathrm{~g}$ peak, 11 ms , half-sine wave

10 to $57 \mathrm{~Hz} @ 0,075 \mathrm{~mm}$ d.a.

172JNN21032

76

Presentation

The Momentum option adapters, mounted on Momentum I/O bases, can be used to enhance the capabilities of the Momentum processor adapters that mount on top of the option adapter, to fulfill a variety of roles. The option adapters allow you to network your local logic solvers together into an intelligent subsystem as part of a larger Schneider Electric application, or into a standalone, integrally networked system with local controllers with extended I/O.

The Momentum option adapters are:

- 172PNN21022 - one Modbus Plus communication port,
- 172PNN26022 - two redundant Modbus Plus communication ports,
- 172JNN21032 - one general-purpose serial communication port, RS 232 or

RS 485 selectable.
Each of these option adapters provides an on-board, TOD (Time-Of-Day) clock that is available to the application residing in the processor adapter. The clock is useful for the scheduling of events, time-stamping operations and operator interface requirements. In addition, each option adapter contains a battery-backup system that maintains the application and its variables in the event of a power outage to the processor adapter. The option adapter's convenient side-door access allows for quick replacement of the single $2 / 3$ AA Lithium battery.

In addition to the TOD clock and battery backup features, the 172PNN21022 adapter allows you to add networking to the intelligent I/O base. Model 172PNN26022 allows you to add redundantly-cabled networking to the I/O base. This opens the Momentum product line to a broad spectrum of applications. You can use the port to connect to other processors, such as:
■ Other Momentum processor/option adapters
■ Other PLCs enabled with Modbus Plus

- Momentum Modbus Plus communication adapters and I/O bases

■ Other third party devices using Modbus Plus to communicate.
Model 172JNN21032 allows you to add a second, defacto-industry standard Modbus port (selectable RS 232/485) to the I/O base. You can use the port to connect to other processors, such as other Momentum processor/option adapters, and other devices, such as operator interface panels and display marquees.

Programming software for Momentum

Momentum processor adapters have a number of PC programming software options available. You can program your processor adapter via the Modbus RS 232 serial port, or if using a Modbus Plus option adapter in conjunction with a processor adapter, via an SA85 card installed in a PC and connected to the same Modbus Plus network. For more specific information, see the appropriate Momentum, ProWORX, and Concept programming software documentation.

Description

A typical Momentum option adapter consists of the following components:
1 9-pin D-shell connector(s) for Modbus Plus communications.
2 Battery compartment.
3 LED indicators.
4 Address switches for Modbus Plus.

Mounting

The Momentum option adapters provide the processor adapters with additional networking capabilities, a time-of-day clock, and a battery back-up. The option adapters also snap onto the I/O base; in this figure, the processor adapter stacks on top. Here, the option adapter is used in conjunction with the processor adapter to extend the system's I/O capacity.

Characteristics					
Model No			172PNN21022	172PNN26022	172JNN21032
Time-of-day clock			On-board, ± 13 s/day accuracy		
Battery	Type		User-replaceable 2/3 AA Lithium		
	Service life		< 30 days from the time a battery-low indication is received, to actual battery failure @ $40^{\circ} \mathrm{C}$ maximum service life ambient temperature with the system continuously powered down		
	Shelf life		In excess of 5 years at room temperature		
Communication port(s)			One Modbus Plus port Drop address range 1 to 64	Two redundant Modbus Plus ports	General-purpose serial port RS 232 or RS 485 selectable
Communication port connector(s)			9-pin D-shell		
Operating temperature		${ }^{\circ} \mathrm{C}$	0 to 60		
Storage temperature		${ }^{\circ} \mathrm{C}$	- 40 to 85		
Relative humidity			5 to 95\% (non-condensing)		
Attitude		m (ft.)	2000 (6.562)		
Shock			± 15 gn peak, 11 ms , half sine wave		
Vibration		Hz	$\begin{aligned} & 57 \text { to } 150 @ 1 \mathrm{gn} \\ & 10 \text { to } 57 @ 0.075 \mathrm{~mm} \text { d.a. } \end{aligned}$		
Height		$\begin{aligned} & \text { in } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & 1.01(25 .) \\ & {[2.10 \text { (58.3) on battery side] }} \end{aligned}$		
Width		$\begin{aligned} & \text { in } \\ & \text { (mm) } \\ & \hline \end{aligned}$	5.57 (143.1)		
Depth		$\begin{aligned} & \text { in } \\ & \text { (mm) } \\ & \hline \end{aligned}$	2.36 (60.06)		
Weight		oz. (g)	3.00 (85.05)		
Material			Lexan		
Voltage		VDC	5.0 (supplied by I/O base)		
Voltage tolerance			$\pm 5 \%$ (as supplied by I/O base)		
RFI immunity/EMI susceptibility/Electrostatic discharge			Meets $\mathrm{C} \epsilon$ mark for open equipment. Open equipment should be installed in an industry standard enclosure, with access restricted to qualified service personnel		
Di-electric strength		VDC	500		
Designed to meet			UL, C \in, CSA, NEMA 250 Type 1, and IP 20 conforming to IE 529		UL, CSA, NEMA 250 Type 1, and IP 20 conforming to IE 529, FM Class I, Div. II
Packaging			Standard Momentum option adaptor		
Indicator lights			Communication active light		
Power source			Power supply on-board the Momentum I/O base		

Option adapters

172PNN21022

	Accessories					
	Description	Use		Length	Reference	Weight kg
		From	To			
:	Standard Modbus Plus cables	T-junction box	T-junction box	30 m (100 ft.)	490NAA27101	-
4 1×4				150 m (100 ft.)	490NAA27102	-
* 1 H-8				300 m (100 ft .)	490NAA27103	-
$172 P N N 26022$				450 m (1500 ft.)	490NAA27104	-
				1500 m (5000 ft.)	490NAA27106	-
	Modbus Plus Drop cables	Communication T-junction boxmodules forMomentum I/O bases		2.4 m (8ft.)	900NAD21110	0.530
				$6 \mathrm{~m}(20 \mathrm{ft}$)	990NAD21130	0.530
	Modbus Plus RS 485 cables	-	-	25 m (10.0 in)	$170 \mathrm{MCIO2010}$	-
				1 m (3 ft.)	170MCI02036	-
$172 J N N 21032$	RS 485 master communication cable (RJ45/RJ45)		-	0.3 m (1 ft.)	170 MCI 04110	-
	Modbus Plus RJ45 cable	-	-	3 m (10 ft.)	170MCI02120	-
	Modbus Plus RJ45 cables	-	-	3 m (10 ft.)	170MCI02180	-
	double-ended			10 m (30 ft.)	170 MCI 02080	-
	RS 232 communication cables (RJ45/RJ45)		-	1 m (3 ft.)	110XCA28201	-
				3 m (10 ft.)	110XCA28202	-
				6 m (20 ft.)	110XCA28203	-
	Description	Use			Reference	Weight kg
	Modbus Plus taps	IP 20 junction box for tap-off connection (T), integrate the terminator. Requires the wiring tools 043509383			990NAD23000	0.230
		IP 65 junction box for tap-off connection (T), supports 1 RJ45 connector on front panel for terminal			990NAD23010	-
	Modbus Plus line connector (9-Pin Sub-D)	Communication module connection			ASMBKT085	-
	Modbus Plus line terminators (sold in lot of 2)	2 impedance adapters for box (IP 20) 990 NAD 23000 (replacement part)			ASMBKT185	-
		2 impedance adapters for box (IP 65) 990 NAD 23010			990NAD23011	-
	D-shell adapters	RJ45 to 9-pin (for AT serial port)			110XCA20300	-
		RJ45 to 25-pin (for XT serial port)			$110 \times C$ A20400	-
	Description			Sold in lots of	Reference	Weight kg (oz.)
	RS 485 (9-Pin Sub-D) cable connector T for RJ45			-	170XTS04000	-
	RJ45 shielded connectors			25	170XTS02200	-
	Modbus Plus terminating RJ45 resistor plugs			2	$170 \times$ TS02100	-
	RS 485 (RJ45) cable connector T for RJ45			-	$170 \times$ TS04100	-
	RS 485 Multi-Master RJ45 shunt plugs			2	170XTS04200	-
	Modbus Plus (9-Pin Sub-D) cable connector T for RJ45			-	170XTS02000	-
	Ground clamp			-	424244739	-
	Wiring tool Mounting trunk and tap wires on the IP20 junction box 990 NAD 23000			-	043509383	-

	Accessories					
	Description	Use		Length	Reference	Weight kg
		From	To			
	Standard Modbus Plus cables	T-junction box	T-junction box	30 m (100 ft.)	490NAA27101	-
				150 m (100 ft.)	490NAA27102	-
				300 m (100 ft.)	490NAA27103	-
172PNN26022				450 m (1500 ft.)	490NAA27104	-
N26022				1500 m (5000 ft.)	490NAA27106	-
	Modbus Plus Drop cables	Communication \quad T-junction boxmodules forMomentum I/O bases		2.4 m (8 ft.)	900NAD21110	0.530
				6 m (20 ft.)	990NAD21130	0.530
	Modbus Plus RS 485 cables	-	-	25 m (10.0 in)	$170 \mathrm{MCIO2010}$	-
				1 m (3 ft.)	170MCI02036	-
172JNN21032	RS 485 master communication cable (RJ45/RJ45)		-	0.3 m (1 ft.)	170 MCI 04110	-
	Modbus Plus RJ45 cable	-	-	3 m (10 ft.)	170MCI02120	-
	Modbus Plus RJ45 cables double-ended	-	-	3 m (10 ft.)	$170 \mathrm{MCIO2180}$	-
				10 m (30 ft.)	170 MCI 02080	-
	RS 232 communication cables (RJ45/RJ45)		-	1 m (3 ft.)	110XCA28201	-
				3 m (10 ft.)	110XCA28202	-
				$6 \mathrm{~m}(20 \mathrm{ft})$	110XCA28203	-
	Description	Use			Reference	Weight kg
	Modbus Plus taps	IP 20 junction box for tap-off connection (T), integrate the terminator. Requires the wiring tools 043509383			990NAD23000	0.230
		IP 65 junction box for tap-off connection (T), supports 1 RJ45 connector on front panel for terminal			990NAD23010	-
	Modbus Plus line connector (9-Pin Sub-D)	Communication module connection			ASMBKT085	-
	Modbus Plus line terminators (sold in lot of 2)	2 impedance adapters for box (IP 20) 990 NAD 23000 (replacement part)			ASMBKT185	-
		2 impedance adapters for box (IP 65) 990 NAD 23010			990NAD23011	-
	D-shell adapters	RJ45 to 9-pin (for AT serial port)			110XCA20300	-
		RJ45 to 25-pin (for XT serial port)			$110 \times$ CA20400	-
	Description			Sold in lots of	Reference	Weight kg (oz.)
	RS 485 (9-Pin Sub-D) cable connector T for RJ45			-	170XTS04000	-
	RJ45 shielded connectors			25	170XTS02200	-
	Modbus Plus terminating RJ45 resistor plugs			2	$170 \times$ TS 02100	-
	RS 485 (RJ45) cable connector T for RJ45			-	$170 \times$ TS04100	-
	RS 485 Multi-Master RJ45 shunt plugs			2	170XTS04200	-
	Modbus Plus (9-Pin Sub-D) cable connector T for RJ45			-	$170 \times$ TS02000	-
	Ground clamp			-	424244739	-
	Wiring tool Mounting trunk and tap wires on the IP20 junction box 990 NAD 23000				043509383	-

	Accessories					
	Description	Use		Length	Reference	Weight kg
		From	To			
	Standard Modbus Plus cables	T-junction box	T-junction box	30 m (100 ft.)	490NAA27101	-
				150 m (100 ft.)	490NAA27102	-
				300 m (100 ft.)	490NAA27103	-
172PNN26022				450 m (1500 ft.)	490NAA27104	-
N26022				1500 m (5000 ft.)	490NAA27106	-
	Modbus Plus Drop cables	Communication \quad T-junction boxmodules forMomentum I/O bases		2.4 m (8 ft.)	900NAD21110	0.530
				6 m (20 ft.)	990NAD21130	0.530
	Modbus Plus RS 485 cables	-	-	25 m (10.0 in)	$170 \mathrm{MCIO2010}$	-
				1 m (3 ft.)	170MCI02036	-
172JNN21032	RS 485 master communication cable (RJ45/RJ45)		-	0.3 m (1 ft.)	170 MCI 04110	-
	Modbus Plus RJ45 cable	-	-	3 m (10 ft.)	170MCI02120	-
	Modbus Plus RJ45 cables double-ended	-	-	3 m (10 ft.)	$170 \mathrm{MCIO2180}$	-
				10 m (30 ft.)	170 MCI 02080	-
	RS 232 communication cables (RJ45/RJ45)		-	1 m (3 ft.)	110XCA28201	-
				3 m (10 ft.)	110XCA28202	-
				$6 \mathrm{~m}(20 \mathrm{ft})$	110XCA28203	-
	Description	Use			Reference	Weight kg
	Modbus Plus taps	IP 20 junction box for tap-off connection (T), integrate the terminator. Requires the wiring tools 043509383			990NAD23000	0.230
		IP 65 junction box for tap-off connection (T), supports 1 RJ45 connector on front panel for terminal			990NAD23010	-
	Modbus Plus line connector (9-Pin Sub-D)	Communication module connection			ASMBKT085	-
	Modbus Plus line terminators (sold in lot of 2)	2 impedance adapters for box (IP 20) 990 NAD 23000 (replacement part)			ASMBKT185	-
		2 impedance adapters for box (IP 65) 990 NAD 23010			990NAD23011	-
	D-shell adapters	RJ45 to 9-pin (for AT serial port)			110XCA20300	-
		RJ45 to 25-pin (for XT serial port)			$110 \times$ CA20400	-
	Description			Sold in lots of	Reference	Weight kg (oz.)
	RS 485 (9-Pin Sub-D) cable connector T for RJ45			-	170XTS04000	-
	RJ45 shielded connectors			25	170XTS02200	-
	Modbus Plus terminating RJ45 resistor plugs			2	$170 \times$ TS 02100	-
	RS 485 (RJ45) cable connector T for RJ45			-	$170 \times$ TS04100	-
	RS 485 Multi-Master RJ45 shunt plugs			2	170XTS04200	-
	Modbus Plus (9-Pin Sub-D) cable connector T for RJ45			-	$170 \times$ TS02000	-
	Ground clamp			-	424244739	-
	Wiring tool Mounting trunk and tap wires on the IP20 junction box 990 NAD 23000				043509383	-

Mounting trunk and tap wires on the IP20 junction box 990 NAD 23000

Option adapter modules	Reference	Weight $\mathbf{k g}$ (oz.)
Description	172PNN21022	$0.070(2.5)$
Modbus Plus option adapter, Single Port	172PNN26022	$0.070(2.5)$
Modbus Plus option adapter, dual redundant ports	172JNN21032	$0.070(2.5)$
Serial option adapter, single serial port		

\qquad

Presentation, characteristics, references

Modicon Momentum automation platform
Cabling system
ConneXium hubs

Characteristics and references

Feadyrent					
Hubs					
Interfaces	Copper cable ports	Number and type	$4 \times 10 B A S E-T$ ports	$4 \times 100 B A S E-T X$ ports	$3 \times 10 B A S E-T$ ports
		Shielded connectors	RJ45		
		Medium	Shielded twisted pair		
		Line length	100 m		
	Optical fiber ports	Number and type	-		$2 \times 10 B A S E-F L$ ports
		Connectors	-		ST (BFOC)
		Medium	-		Multi mode optical fiber
		Line length 50/125 $\mu \mathrm{m}$ fiber	-		2300 m (7.546 ft.) (1)
		62.2/125 $\mu \mathrm{m}$ fiber	-		3100 m (10.170 ft.) (1)
		Optical budget 50/125 $\mu \mathrm{m}$ fiber	-		10 dB
		62.2/125 $\mu \mathrm{m}$ fiber	-		13 dB
Topology	Number of cascaded hubs (copper)		4 max.	2 max.	4 max.
	Number of hubs in a	ring (fiber)	-		11 max.
Redundancy			P1 and P2 redundant power supplies		P1 and P2 redundant power supplies, redundant optical ring
Power supply	Voltage		--- 24 V (18 to 32 V), safety extra low voltage (SELV)		
	Power consumption		80 mA (130 max. at $=-24 \mathrm{~V}$)	210 mA (270 max. at =-- 24 V)	$160 \mathrm{~mA}(350 \mathrm{max}$. at $=-24 \mathrm{~V})$
	Removable terminal		5-pin		
Operating temperature			0 to $+60^{\circ} \mathrm{C}$ (32 to $140^{\circ} \mathrm{F}$)		
Relative humidity			10 to 95% non condensing		
Degree of protection			IP 30	IP 20	IP 30
Dimensions W x H x D		mm (in)	$\begin{aligned} & 40 \times 125 \times 80 \\ & (1.57 \times 4.92 \times 3.14) \end{aligned}$	$\begin{aligned} & 47 \times 135 \times 111 \\ & (3.15 \times 5.51 \times 3.35) \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \times 140 \times 85 \\ & (1.85 \times 5.31 \times 4.37) \\ & \hline \end{aligned}$
Weight		kg (lbs)	0.530 (1.17)	0.240 (0.53)	0.900 (1.98)
Conformity to standards			cUL 60950, UL 508 and CSA 142, UL 1604 and CSA 213 Class 1 Division 2, C€, GL		
			FM 3810, FM 3611 Class 1 Division 2	-	FM 3810, FM 3611 Class 1 Division 2
LED indicators			Power, activity, link	Power, activity, link, error	Power, activity, link, collision
Alarm contact			Power supply failure, permanent fault in hub, faulty link status of TP port (volt-free contact 1 A max. under --- 24 V)		
Reference			499NEH10410	499NEH14100	499NOH10510

Modicon Momentum automation platform
 Cabling system
 ConneXium transceivers

Presentation

The use of ConneXium transceivers makes it possible to perform the following:

- Creation of linear fiber optic bus topologies, for products with twisted pair cable Ethernet connection.
■ Interfacing products with twisted pair cable Ethernet connection with fiber optic cable.

Transceivers are "plug and play" devices that do not need any configuration. For more details, consult our catalog "Transparent Ready, Ethernet TCP/IP and Web technologies".

ConneXium transceivers provide fiber optic connections for transmission in areas subject to interference (high levels of electromagnetic interference) and for long distance communications.

Linear topology on optical fiber

Characteristics and references

		Readyrent		
Transceivers				
Interfaces	Copper cable port	Number and type	$1 \times 10 B A S E-T$ port	$1 \times 100 B A S E-T X$ port
		Shielded connectors	RJ45	
		Medium	Shielded twisted pair	
		Line length	100 m (328 ft.)	
	Optical fiber ports	Number and type	$1 \times 10 B A S E-F L$ port	$1 \times 100 B A S E-F X$ port
		Connectors	ST (BFOC)	SC
		Medium	Multi mode optical fiber	
		Line length 50/125 $\mu \mathrm{m}$ fiber	2300 m (7.546 ft.) (1)	5000 m (16.404 ft.) (1)
		62.5/125 $\mu \mathrm{m}$ fiber	3100 m (10.170 ft.) (1)	4000 m (13.123 ft.) (1)
		Optical budget 50/125 $\mu \mathrm{m}$ fiber	10 dB	8 dB
		62.5/125 $\mu \mathrm{m}$ fiber	13 dB	11 dB
Redundancy			P1 and P2 redundant power supplies	
Power supply	Voltage		=-- 24 V (18 to 32), safety extra low voltage (SELV)	
	Power consumption		80 mA (100 max. at $=-24 \mathrm{~V}$)	$190 \mathrm{~mA}(240$ max. at $=-24 \mathrm{~V}$)
	Removable terminal		5-pin	
Operating temperature			0 to $+60^{\circ} \mathrm{C}$ (32 to $\left.140{ }^{\circ} \mathrm{F}\right)$	
Relative humidity			10 to 95% non condensing	
Degree of protection			IP 30	IP 20
Dimensions W xHxD		mm (in)	$40 \times 134 \times 80(1.57 \times 5.47 \times 3.14)$	$47 \times 135 \times 111$ (3.15 $\times 5.51 \times 3.35$)
Weight		kg (lbs)	0.520 (1.15)	0.230 (0.50)
Conformity to standards			cUL 60950, UL 508 and CSA 142, UL 1604 and CSA 213 Class 1 Division 2, C€, GL	
			FM 3810, FM 3611 Class 1 Division 2	-
LED indicators			P1 and P2 power supplies, Ethernet link/port status	
Alarm contact			Power supply failure, permanent fault in hub, faulty link status of TP port (volt-free contact 1 A max. under --- 24 V)	
Reference			499NTR10010	499NTR10100

Presentation, characteristics, references

Modicon Momentum automation platform
Cabling system
ConneXium switches

Presentation

Switches are used to increase the limits of architectures based on hubs or transceivers, by separating collision domains. Higher layer communication is provided between the ports, and collisions at link layer are not propagated (filtering). They therefore improve performance by better allocation of the pass band due to the reduction of collisions and the network load.
Certain Connexium switches also enable redundant architectures to be created on twisted pair copper or fiber optic rings.
Switches are "plug \& play" devices that do not need any configuration. They can also be administered remotely via the SNMP or HTTP protocols for monitoring and diagnostics purposes.

Characteristics and references

Characteristics and references (continued)						
Readyrent						
			Unmanaged, copper	Managed, copper	Managed, copper + fiber	
Switches Interfaces	Copper cable ports	Number and type	$\begin{aligned} & 8 \times \text { 10BASE-T/ } \\ & \text { 100BASE-TX ports } \end{aligned}$	$\begin{aligned} & 7 \times 10 B A S E-T / \\ & \text { 100BASE-TX ports } \end{aligned}$	$5 \times 10 B A S E-T / 100 B A S E-T X ~ p o r t s$	
		Shielded connectors	RJ45			
		Medium	Shielded twisted pair			
		Max. distances	100 m (328 ft .)			
	Optical fiber ports	Number and type	-		$2 \times 100 B A S E-F X$ ports	
		Connectors	-		SC	
		Medium	-		Multi mode optical fiber	Mono mode optical fiber
		$\begin{aligned} & \hline \text { Fiber length } \\ & 50 / 125 \mu \mathrm{~m} \end{aligned}$	-		5000 m (16.404 ft.) (1)	-
		62.2/125 $\mu \mathrm{m}$	-		4000 m (13.123 ft.) (1)	-
		$9 / 125 \mu \mathrm{~m}$	-		-	$\begin{aligned} & 32500 \mathrm{~m}(106.627 \mathrm{ft} .) \\ & \text { (2) } \end{aligned}$
		Optical budget 50/125 $\mu \mathrm{m}$	$-$		8 dB	-
		62.2/125 $\mu \mathrm{m}$	-		11 dB	-
		$9 / 125 \mu \mathrm{~m}$	-		-	16 dB
	Ethernet services		-	FDR client, SNMP V3, SNTP, multicast filtering for optimization of the Global Data protocol, Web based configuration VLAN, IGMP Snooping, RSTP (Rapid Scanning Three Protocol), Port priority, Flow control, Port security		
Topology	Number of switches	Cascaded	Any			
		Redundant in a ring	-	50 max.		
Redundancy			P1 and P2 redundant power supplies			
Power supply			--- 24 V (88 to 32 V), safety extra low voltage (SELV)			
			125 mA (290 max.) 400 mA			
	Removable terminals		5-pin			
Operating temperature			0 to $+60^{\circ} \mathrm{C}$	0 to $+55^{\circ} \mathrm{C}$		
Relative humidity			10 to 95% non condensing			
Degree of protection			IP20			
Dimensions W x H x D		mm (in)	$\begin{aligned} & 47 \times 135 \times 111 \\ & (3.15 \times 5.51 \times 3.35) \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \times 131 \times 111 \mathrm{~mm} \\ & (4.33 \times 5.16 \times 4.37) \\ & \hline \end{aligned}$		
Weight		kg (lbs)	0.230 (0.72) 0.460 (1.00)			
Conformity to standards			cUL 60950, UL 508 and CSA 14, UL 1604 and CSA 213 Class 1 Division 2, c¢, GL			
LED indicators			P1 and P2 power supplies, Ethernet link status,	P1 and P2 power supplies, Ethernet link status, redundancy management		
Alarm contact			Power supply failure, permanent fault in hub, faulty link status of TP port (volt-free contact 1 A max. under -.- 24 V)			
				Redundancy health		
Reference			499NES18100	499NES27100	499NOS27100	499NSS27100

(1) Depends on the optical fiber budget and fiber attenuation (typical specification: 2 km). (2) Depends on the optical fiber budget and fiber attenuation (typical specification: 15 km).

Presentation, characteristics, references

Modicon Momentum automation platform
Cabling system
ConneXium IP 67 switch

Characteristics and references

Feadyrent

IP 67 switch			Unmanaged, copper	
Interfaces	Copper cable ports	Number and type	$6 \times 10 B A S E-T / ~ 100 B A S E-T X ~ p o r t s ~$	
		Shielded connectors	M12 (type D)	
		Medium	Shielded twisted pair	
		Max. distances	100 m (328 ft.)	
	Optical fiber ports	Number and type	-	
		Connectors	-	
		Medium	-	
		Fiber length	-	
		Optical budget	-	
	Ethernet services		Store and forward, auto MDI/MDX (no need cross over cable), Duplex mode and speed auto negotiation, auto polarity	
Topology	Number of switches	Cascaded	Any	
		Redundant in a ring	-	
Redundancy			-	
Power supply	Voltage		--- 24 V (--- 18 to 32 V), safety extra low voltage (SELV)	
	Power consumption		100 mA	
	Removable terminals		5-pin	
Operating temperature			0 to $+60^{\circ} \mathrm{C}$	
Relative humidity			-	
Degree of protection			IP67	
Dimensions W x H x D		mm (in)	$60 \times 126 \times 31(2.36 \times 4.96 \times 1.22)$	
Weight		kg (lbs)	0.210 (0.46)	
Conformity to standards			cUL 508 and CSA 22-214	
LED indicators			Power supplies, link status, data activity	
Alarm contact			-	
Reference			TCSESU051F0	
Separate parts				
Power cables, length 2,5 m (8.2 ft.)			Female M12 straight connector	Female M12 elbow wed connector
Reference			XZCP1164L	XZCP1264L
Spare power connector			Female M12 straight connector	Female M12 elbow wed connector
Reference			XZCC12FDM50	XZCC12FCM50B

Ethernet cables: see page 83.

Modicon Momentum automation platform
 Cabling system
 ConneXium connection cables

490NT•00000

490NOTOOOO5

490NOR00005

Presentation

ConneXium shielded connection cables are available in two versions to meet current standards and approvals:

- Standard EIA/TIA 568 shielded twisted pair cables:

These cables conform to the EIA/TIA-568 standard, category 5, IEC 11801/EN 50173 class D. Their fire behavior conforms to NFC 32070\# class C2 and IEC 322/1, Low Smoke Zero Halogen (LSZH).

■ UL and CSA 22.1 approved shielded twisted pair cables:
These cables are UL and CSA 22.1 approved. Their fire resistance conforms to NFPA 70.

References				
Standard EIA/TIA 568 shielded twisted pair cables				
Description	Pre-equipped at both ends	Length m (ft.)	Reference	Weight kg
Straight-through shielded twisted pair cables	2 RJ45 connectors For connection to terminal devices (DTE)	2 (6.6)	490NTW00002	
		5 (16.4)	490NTW00005	
		12 (39.4)	490NTW00012	
		40 (131.2)	490NTW00040	
		80 (262.5)	490NTW00080	
Description	Pre-equipped at both ends	Length	Reference	Weight kg
Crossed cord shielded twisted pair cables	2 RJ45 connectors For connections between hubs, switches and transceivers	5 (16.4)	490NTC00005	
		15 (49.2)	490NTC00015	
		40 (131.2)	490NTC00040	
		80 (262.5)	490NTC00080	

UL and CSA 22.1	approved shielded twisted pair cables		
Description	Pre-equipped at both ends	Length	Reference
:---		Weight	
---:			
kg			

Description	Pre-equipped at both ends	Length	Reference	Weight kg
Crossed cord shielded twisted pair cables	2 RJ45 connectors	For connections between hubs, switches and transceivers	$\frac{5(16.4)}{15(49.2)} 490$ 490NTC00005U	-
	$\frac{40(131.2) 490 \text { TTC00015U }}{80(262.5) 490 \text { NTC00040U }}$	-		

Description	Pre-equipped at both ends	Length m (ft.)	Reference	Weight kg
Glass fiber optic cables for terminal devices (DTE) to hubs, switches and transceivers	1 SC connector and 1 MT-RJ connector	5 (16.4)	490NOC00005	
	1 ST (BFOC) connector and 1 MT-RJ connector	5 (16.4)	490NOT00005	
	2 MT-RJ connectors	3 (9.8)	490NOR00003	
		5 (16.4)	490NOR00005	
		15 (49.2)	490NOR00015	

Presentation

Concept is a software configuration and application programming tool for the automation platform. It is a Windows-based software that can be run on a standard personal computer. The configuration task can be carried out online (with the PC connected to the CPU) or offline (PC only). Concept supports the configuration by recommending only permissible combinations, thereby preventing misconfiguration. During online operation, the configured hardware is checked immediately for validity, and illegal statements are rejected.

When the connection between programming unit (PC) and CPU is established, the configured values (e.g., from the variables editor) are checked and compared with actual hardware resources. If a mismatch is detected, an error message is issued.

Concept editors support five IEC programming languages:
■ Function block diagram (FBD)

- Ladder diagram (LD)
- Sequential function chart (SFC)
- Instruction list (IL)
- Structured text (ST)
as well as Modsoft-compatible ladder logic (LL984). IEC 61131-3 compliant data types are also available. With the data type editor, custom data types can be converted to and from the IEC data types.

The basic elements of the FBD programming language are functions and function blocks that can be combined to create a logical unit. The same basic elements are used in the LD programming language; additionally, LD provides contact and coil elements. The SFC programming language uses basic step, transition, connection, branch, join and jump elements. The IL and ST text programming languages use instructions, expressions, and key words. The LL984 programming language uses an instruction set and contact and coil elements.

You can write your control program in logical segments. A segment can be a functional unit, such as conveyor belt control. Only one programming language is used within a given segment. You build the control program, which the automation device uses to control the process, by combining segments within one program. Within the program, IEC segments (written in FBD, LD, SFC, IL and ST) can be merged. The LL984 segments are always processed as a block by the IEC segments. Concept's sophisticated user interface uses windows and menus for easy navigation. Commands can be selected and executed quickly and easily using a mouse. Context-sensitive help is available at each editing step.

PLC hardware configuration

Variables for linking basic objects within one section are not required by the graphic programming languages (FBD, LD, SFC and LL984) since these links are created by connections. These connections are managed by the system, which eliminates any configuration effort. Other variables, such as variables for data transfers between different sections, are configured with the variables editor. With the data type editor, custom data types can be derived from existing data types.

Abstract

Functions Concept provides an editor for each programming language. These editors contain custom menus and tool bars. You can select the editor to be used as you create each program segment.

In addition to the language editors, Concept provides a data type editor, a variables editor and a reference data editor.

Function block diagram (FBD)

With the IEC 61131-3 function block diagram language, you can combine elementary functions, elementary function blocks (EFBs) and derived function blocks (all three of which are known as FFBs) with variables in an FBD. FFBs and variables can be commented. Text can be freely placed within the graphic. Many FFBs offer an option for input extensions.

Concept provides various block libraries with predefined EFBs for programming an FBD. EFBs are grouped in the libraries according to application types to facilitate the search.

In the FBD editor, you can display, modify and load initial values; current values can be displayed. The CLC and CLC_PRO libraries allow you to display animated diagrams of the FFBs and a graph of the current values.

For custom function blocks (DFBs), the Concept-DFB editor is used. In this editor, you can create your own function blocks from EFBs or existing DFBs. DFBs created in the FBD editor can be recalled in the LD, IL and ST editors, and DFBs created in the LD, IL and ST editors can be used in the FBD editor.

Ladder diagram (LD)

With the IEC 61131-3 ladder diagram language, you can build an LD program with elementary functions, function blocks and derived function blocks (all of which are known as FFBs), along with contacts, coils and variables. FFBs, contacts, coils and variables can be commented. Text can be placed freely within the graphics. Many FFBs offer an option for input extensions.
The structure of an LD segment corresponds to that of a current path for relay circuits. On its left side is a left bus bar, which corresponds to the phase (L conductor) of a current path. As with a current path, only the LD objects (contacts, coils) connected to a power supply (i.e., connected to the left bus bar) are processed in LD programming. The right bus bar, which corresponds to the neutral conductor, is not visible. However, all coils and FFB outputs are internally connected to it in order to create a current flow.
The same EFB block libraries available for the FBD editor can be used in the LD editor to program a ladder diagram.

In the LD editor, initial values can be displayed, modified and loaded; current values can be displayed. For the EFBs in libraries CLC and CLC_PRO, animated diagrams of the FFBs and a graph of the current values can be displayed.

For custom function blocks (DFBs), the Concept-DFB editor is used. With this editor, you can create your own function blocks from EFBs or existing DFBs. DFBs created in the LD editor can be recalled in the FBD, IL and ST editors, and DFBs created in the FBD, IL and ST editors can be used in the LD editor.

Functions (continued)

Sequential function chart (SFC) (1)
With the IEC 61131-3 sequential function chart (SFC) language, you can define a series of SFC objects that comprise a control sequence. Steps, transitions and jumps in the sequence can be commented. You can place text freely within graphics. You can assign any number of actions to every step. A series of monitoring functionse.g., maximum and minimum monitoring time-can be integrated into each step's characteristics. The actions can be assigned an attribute symbol (as required by IEC) to control the action's performance after it has been activated-e.g., a variable can be set to remain active after exiting.

Instruction list (IL)

With the IEC 61131-3 IL language, you can call entire functions and function blocks conditionally or unconditionally, execute assignments and make conditional and unconditional jumps within a program segment.

IL is a text-based language, and standard Windows word processing tools can be used to generate code. The IL editor also provides several word processing commands. Keywords, separators and comments are spell-checked automatically as they are entered. Errors are highlighted in color.

For custom function blocks (DFBs), the Concept-DFB editor is used. In this editor, you can create your own function blocks from EFBs or existing DFBs. DFBs created in the IL editor can be recalled in the ST, LD and FBD editors, and DFBs created in the ST, LD and FBD editors can be used in the IL editor.

Structured text (ST)

With the IEC 61131-3 ST language, you can call function blocks, execute functions and assignments and conditionally execute and repeat instructions. The ST programming environment is similar to Pascal. It is a text-based language, and Windows word processing functions can be used to enter code. The ST editor itself also provides several word processing commands. Keywords, separators, and comments are spell-checked automatically as they are entered. Errors are highlighted in color.

Custom function blocks (DFBs) created with the ST editor can be called in the IL, LD and FBD editors; DFBs created in the IL, LD and FBD editors can be used in the ST editor.
(1) SFC language, only available with Concept M and Concept XL software.

Abstract

Functions (continued) Data type editor The data type editor defines new derived data types. Any elementary data types and derived data types already existing in a project can be used for defining new data types. With derived data types, various block parameters can be transferred as one set. Within the program, this set is divided again into single parameters, processed, then output as either a parameter set or individual parameters. Derived data types are defined in text format, and standard Windows word processing tools can be used. The data type editor also provides several word processing commands.

Variables editor

The variables editor contains input options for:

- The variable type (located variable, unlocated variable, constant).

■ The symbolic name.

- The data type.

■ Direct address (explicit, if desired).

- Comments.

■ Identification as human-machine interface (HMI) variable for data exchange.

Reference data editor

In online mode, the reference data editor displays, forces and controls variables.
The editor contains the following options:

- Default values for the variable.
- Status display for the variable.
- Various format definitions.
- The ability to isolate the variable from the process.

Functions (continued)

Libraries

EC Library
The IEC library contains the EFBs defined in IEC 61131-3 (calculations, counters, timers, etc)

Extended Library

The extended library contains useful supplements to various libraries. It provides EFBs for mean value creation, maximum value selection, negation, triggering, converting, building a traverse with interpolation of the first order, edge detection and determination of the neutral range for process variables.

System Library

The system library contains EFBs in support of system functions. It provides EFBs for cycle time detection, utilization of various system clocks, control of SFC sections and system status display.

CLC and CLC_PRO Library

The CLC library is used for defining process-specific control loops. It contains control, differentiation, integration and polygon graph EFBs. The CLC_PRO library contains the same EFBs as the CLC library along with data structures.

Communication Library

The communication libraries of built-in function blocks provide easy integration of programs which allow communication between PLCs or HMI devices from within the PLC's application program. Like other function blocks, these EFBs can be used in all languages to share data, or provide data to the HMI device for display to the operator.

Diagnostics Library

The diagnostics library is used for troubleshooting the control program. It contains EFBs for action, reaction, interlocking, and process prerequisite diagnostics, along with signal monitoring.

LIB984 Library
The LIB984 library provides common function blocks used in both the 984 ladder logic editor and the IEC languages. This allows for easy transition of portions of application code from the 984LL environment to the IEC environment.

Fuzzy Logic Library

The fuzzy library contains EFBs for fuzzy logic.

[^4]Concept programming software

References			
Concept packages			
Description	License type	Reference	Weight kg
Concept S Version 2.6	Single-station	372SPU47101V26	-
Concept M Version 2.6	Single-station	372SPU47201V26	-
Concept XL Version 2.6	Single-station	372SPU47401V26	-
	Group (3 stations)	372SPU47411V26	-
	Team (10 stations)	372SPU47421V26	-
	Site (> 10 stations)	372SPU47431V26	-
Concept EFB Toolkit Version 2.6	Single-station	332SPU47001V26	-
HVAC Function Blocks Library Site (> 10 stations)		372HVA16030V25	-
Concept package for exploitation and maintenance			
Description	License type	Reference	Weight kg
Concept Application Loader	Single-station	372SPU47701V26	-

Concept upgrades			
Description	License type	Reference	Weight kg
Concept XL V x.x to Concept XL V 2.6	Single-station	372ESS47401	-
	Group (3 stations)	372ESS47403	-
	Team (10 stations)	372ESS47410	-
	Site (> 10 stations)	372ESS47400	-
Concept S V x.x to Concept S V 2.6	Single-station	372ESS47101	-
Concept M V x.x to Concept M V 2.6	Single-station	372ESS47201	-
Modsoft V x.x to Concept XL V 2.6	Depends on number of users	372ESS48501	-
Concept EFB Toolkit V x.x to V 2.6	-	372ESS47101	-

Documentation	Number of volumes	Reference (1)	Weight kg
Description	1	840 SE	

(1)• = $\mathbf{0}$ in this position indicates english language, $\mathbf{1}$ indicates french language, $\mathbf{2}$ indicates german language and $\mathbf{3}$ indicates spanish language.

ProWORX ${ }^{32}$

Presentation

ProWORX 32 programming software is a full-featured, Modicon PLC programming software that is compatible with Windows platforms ($98 / \mathrm{NT} / 2000 / \mathrm{XP}$) that gives you the power to program all your Modicon controllers online or offline, manage your I/O subsystems, and analyze your plant's activity in real-time.

Some of the new ProWORX 32 features:
32-bit processing. With 32 -bit processing, ProWORX 32 is an even more powerful solution than its predecessors, ProWORX Plus and ProWORX NxT. 32-bit processing lets you utilize the power of state-of-the-art operating systems for optimal development and operational performance.
A comprehensive suite of tools. ProWORX 32 provides everything you will need to start, configure, test and complete your project, quickly, reliably and professionally. With its improved suite of standard utilities, ProWORX 32 is a virtual "one stop shop" for your Automation Journey. No more searching on the web for special features or functions, they're all included to save you time and increase your productivity.
A powerful offer. In addition, ProWORX 32 will simplify and speed up your system development and commissioning time with powerful diagnostics, easier integration, and greater openness and flexibility.
Easier integration. Using standard Microsoft components for the basis of ProWORX 32 opens up a wealth of user data. Import and export capabilities have been enhanced to provide a variety of integration options for HMI and third party devices, such as a built in "Alliance Tool" which allows users to create hardware profiles for newly developed devices. The profiles can even be sent electronically to Schneider Electric for inclusion in future product releases.

Windows environment

The familiar Windows-based programming environment means you spend less time learning how to do things, and more time being productive. ProWORX uses familiar Windows features like user-defined screens, drag-and-drop, cut and paste, search, and global replace.

Conversion

484 to 984 in one step! The most flexible conversion tools available in the automation industry. That is the reputation ProWORX products have always enjoyed, and ProWORX 32 is no exception. With the ability to convert from older project databases to this latest tool, ProWORX 32 supports almost 30 years of PLC heritage.

Multiple projects

Imagine the time and effort you could save by testing a new project with an existing project while it is running live. Now you can with the Multiple Projects function of ProWORX 32, even with two PLCs running simultaneously! Perform diagnostic checks to validate interdependencies between your emulated project and your live applications, all in real time, so you can go live with total confidence.

Intuitive Register Editor

A powerful analysis tool, the Data Watch Window shows you information from your plant in real-time, or logs it to disk for in-depth historical analysis later on. Easily get the data you need to make informed, effective production decisions. View and edit data in full page display, see trends and track data points against time in a spreadsheet, and monitor any combinations of discrete and analog activities.

I/O drawing generator

Save hours of painstaking effort with ProWORX 32's I/O Drawing Generator, which automatically creates wiring diagrams for the I/O cards defined in the Traffic Cop. Generate necessary drawings all at once or just one card at a time - simply select an address the I/O card uses with the Network Editor, then click the drawing button on the Hardware Back Referencing panel to display the diagram, and if desired, save it as an AUTOCAD-compatible.DXF file or print it.

Modicon Momentum automation platform
ProWORX 32 programming software

Abstract

Presentation (continued) Network editor With the Network Editor, ProWORX 32 reduces development time by using the same commands and instructions for every controller. Simply cut, copy, and paste networks from one platform to any other.

Program Documentation

ProWORX 32 is first-class software with first-class program documentation. Use one of the many standard templates to get started, and progress to assemble your own custom documentation. For better references and easier-to-use documentation, we have provided annotation down to the "Bit" level to allow longer comments and more lines of text. Even simple things like using Windows O / S fonts to eliminate printer issues demonstrates that every detail has been considered.

Real-time network status

Find the controller you need fast and simplify network diagnostics with ProWORX 32's powerful Network Scan feature. Network Scan searches your Modbus or Modbus Plus networks, then identifies and graphically displays each device found and shows its status.

Powerful diagnostics

To effectively control your operation, you need to see your operation in action. The built-in HMI allows you to build a simple representation of your application to visualize the entire operation. With the "Data Watch Window", you can see values in real-time and perform "Data Logging" for later data analysis. The "Trending" tool is a simple built-in chart recorder to help you visualize performance factors without having to crunch hard data. And "Diagnostic Trace" helps to easily solve complicated issues such as network element interdependencies.

Advanced I/O management

Ensure that the I/O card you are configuring in the software matches the one on your plant floor with ProWORX 32's graphical Traffic Cop. It displays I/O cards on your screen the same way they look in real life, eliminating all confusion. To place a card, just select it from the convenient drop down menu and then drag it into the controller slot you want. To save even more time, the Traffic Cop automatically associates the card's I/O points with a block of free addresses in your controller. Once configured, manage your I/O with Pro WORX 32's complete documentation tools, with references for each head, drop, rack, slot and address. And the Traffic Cop's graphical display shows you at a glance that your I/O is healthy.

Presentation (continued)
 Client/Server Tools

ProWORX 32 allows projects to be developed in a collaborative environment without sacrificing control and security by utilizing the ProWORX 32 server as the central repository for projects, the center for security, and the hub for communications. The system administrator has total control over user accounts, user groups, passwords, rights, and auditing policies and can grant access when and where needed.

The client/server relationship allows projects to be skillfully managed and controlled. The server can be used to keep "Master" versions of PLC projects for editing (subject to rights), while editing is achieved using the client. This can be done via a standalone PC or even on the server since both client and server can reside on the same PC.

The server has the capability to schedule software backups of the controller, detect software modifications and store multiple versions. Even more powerful is the ability to communicate from the client to the server using either Ethernet TCP/IP or Modbus Plus.

Project Emulator

The project emulator is a very powerful tool that will help save considerable time in the design and testing of your system. It provides the ability to test projects prior to running them in the PLC run-time environment to ensure your system will run at peak efficiency immediately upon commissioning. Two emulators are provided that test interdependent projects with one another, giving you complete confidence and peace of mind before going live.

Material List Generation

Want a shopping list for your PLC equipment? The Material List Generation function automatically creates a list for the project, either online or offline, even taking into account the contents of the Traffic Cop. Add prices and comments once the list is generated, saving you time and insuring that all required components are fully documented and identified.

ProWORX 32 programming software

ProwORX ${ }^{32}$

ProWORX Client/Server software			
ProWORX packages			
Description	License type	Reference	Weight kg
ProWORX 32	Server	372SPU78001PSEV	
	Client/Server Suite	372SPU78001PSSV	
	Offline/Online Client	372SPU78001PDEV	
	Group (3 stations)	372SPU78001PSTH	
	Team (10 stations)	372SPU78001PSTE	
	Site (> 10 stations)	372SPU78001SITE	
	Online Client	372SPU78101PONL	
ProWORX 32 Lite	Offline/Online Client	372SPU71001PLDV	
	Group (3 stations)	372SPU71001PLTH	
	Team (10 stations)	372SPU71001PLTE	

Legacy Product	Client	372SPU78401LPUP	-
Upgrade to ProWORX 32	Group (3 stations)	372SPU78401LPTH	-
	Team (10 stations)	372SPU78401LPTE	-
	Multi-station Incremental	372SPU78401SEAT	-
	Addition		

Documentation	Language	Reference	Weight kg
Description		372SPU78001EMAN	-
ProWORX 32 User Manuals	English	372SPU78001FMAN	-
	French	372SPU78001DMAN	-
	German	372SPU78001SMAN	-
Spanish			

Presentation

If your control system needs to operate in a corrosive environment, selected Momentum modules can be ordered with a conformal coating applied to components of the product. Conformal coating will extend its life and enhance its environmental performance capabilities.

$\begin{array}{l}\text { Mixed flowing gas (power on) }\end{array}$				
Standard $\begin{array}{l}\text { EIA 364-65 } \\ \text { level III }\end{array}$	Pollutant			

Humidity (operating)

Standard	Concentration (\%)	Momentum's performance
IEC-68-2-3	$93 @ 60^{\circ} \mathrm{C}\left(140{ }^{\circ} \mathrm{F}\right)$	Meets standard

Salt mist (non-operating)

| Salt mist (non-operating) | |
| :--- | :--- | :--- |
| Standard Concentration (\%) Momentum's performance
 IEC 68-2-11 $5(\pm 1)$ Exceeds standard (5.7\%) | |

Fungus resistance Standard		
MIL-I-46058C		Momentum's performance

Temperature cycling (operating)

Temperature cycling (operating)		
Standard	Cycles	Momentum's performance
IEC 68-2-14	$100 @ 0 \ldots 60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$	Meets standard

Dust (non-operating)

Standard			
EIA 364-TP91 (pending)	Pollutant	Weight (\%)	Momentum's performance
	Calcite	36	Meets standard
	Iron oxide	29	Meets standard
	Alumina	8	Meets standard
	Gypsum	5	Meets standard
	Paper fiber	3	Meets standard
	Cotton fiber	3	Meets standard
	Polyester fiber	2	Meets standard
	Carbon black	1	Meets standard
	Humand hair	0.5	Meets standard
	Cigarette ash	0.5	

Aggressive environments protection
 Optional conformal coating

References

170ADI3•000C

Communication adapters

Description	Characteristics	Reference	Weight kg
Ethernet TCP/IP network	$10 \mathrm{M} \mathrm{bit} / \mathrm{s}$	170 ENT 110 02C	0.070
Modbus Plus network	IEC format, non-redundant	170 PNT 110 01C	0.070
	984 format, non-redundant	170 NEF 110 21C	0.070
Fipio bus	Bus manager Premium	170 FNT 110 20C	0.070
InterBus	Generation 3 (SUPI 2)	170 INT 110 00C	0.070
	Generation 4 (SUPI 3, version 2)	170 INT 110 03C	0.070
Profibus DP	$9.6 \mathrm{~K} \mathrm{bit/s} \mathrm{to} 12 \mathrm{M} \mathrm{bit/s}$	170 DNT 110 00C	0.070

$171 C C C 0000$

172PNN21022C
This following is a list of Momentum products that are availability with the optional conformal coating.
Note : Please note that a " C " is appended to the standard reference for those Momentum products.

Discrete I/O bases						
Type of current	Input voltage		Modularity (no. of points)	Conformity EC 1131-2	Reference	Weight kg
Discrete input bases	24 VDC		16 (1×16)	Type 1	170ADI34000C	0.190
			32 (2×16)	Type 1	170ADI35000C	0.200
Type of current	Output voltage		Modularity (no. of points)	Current per output	Reference	Weight kg
Discrete output bases solid state, protected	24 VDC		16 (2x8)	0.5 A	170ADO34000C	0.210
			$32(2 \times 16)$	0.5 A	170ADO35000C	0.210
Type of current	Input voltage	Output voltage	Modularity Input	Outputs, current	Reference	Weight kg
Discrete I/O bases	24 VDC Type 1	24 VDC protected solid state	$16 \mathrm{I}(1 \times 16)$	$16 \mathrm{O}(2 \times 8) 0.5 \mathrm{~A}$	170ADM35010C	0.200
			$16 \mathrm{I}(4 \times 4)$	$8 \mathrm{O}(2 \times 4) 2 \mathrm{~A}$	170ADM37010C	0.220
	$24 \text { VDC }$ Type 1	$\begin{aligned} & 24 / 230 \text { VAC } \\ & \text { 20/115 VDC } \\ & \text { relay } \end{aligned}$	$10 \mathrm{l}(1 \times 10)$	$8 \mathrm{O}(2 \times 4) 2 \mathrm{~A}$	170ADM39030C (1)	0.260

Option adapters

| Memories | | Reference | Weight
 $\mathbf{k g}$ |
| :--- | :--- | :--- | ---: | ---: |
| Modbus Plus network | Single port, Time-of-Day (TOD) and battery backup | 172PNN21022C | 0.070 |
| Modus link | $2 \times$ RS 232/RS 485 ports, Time-of-Day (TOD) and battery backup 172JNN21032C | 0.070 | |

Communication adapter cover
2 I/O base
3 Standard screw M3-6
4 Male-female standoff
5 Added standoff

Momentum communication adapter ground screw

Due to new InTERBus standards for electrical noise immunity, a number of Momentum products have been updated to include the enhanced grounding system, which is required to meet the revised electrical noise immunity standard (ability to pass a 2.2 k VDC electrical fast transient burst test).
This grounding system includes a ground screw in the communication or M1/M1E processor adapter, which is connected to a fixed standoff-ground nut on the printed circuit board and to a standoff on selected Momentum I/O bases

Nota : This electrical noise immunity requirement applies only to systems that require INTERBUS certification, version 2, and not to any other communication network that Momentum I/O currently uses. The standard electrical fast transient test for Momentum is 500 VDC.

The following is a list of the Momentum modules that currently have been updated to include the new grounding system:

- Communication adapters.

■ M1/M1E processor adapters and option adapters

- Discrete and analog I/O bases

References

Range	Description	Reference	$\begin{aligned} & \text { See } \\ & \text { page } \end{aligned}$
Communication adapters	Ethernet TCP/IP 10/100 M bits/s (V2)	170 ENT11001	49
	Ethernet TCP/IP 10 M bits/s (V1)	170ENT11002	49
	InTERBUS SUPI 3 (V2)	$1701 N T 11003$	57
	Fipio bus (for Premium) (V2)	170FNT11001	55/96
M1/M1E processor adapters	$64 \mathrm{~K}, 1$ Modbus, 20 MHz	171CCS70000	70
	$64 \mathrm{~K}, 1$ Modbus, 32 MHz	171 CCS70010	70
	$64 \mathrm{~K}, 2$ Modbus, 20 MHz	171CCS78000	70
	$256 \mathrm{~K}, 1$ Modbus, $1 \mathrm{I} / \mathrm{O}$ bus, 32 MHz	171CCS76000	70
	$512 \mathrm{~K}, 1$ Modbus, $1 \mathrm{l} / \mathrm{O}$ bus, 32 MHz	171CCC76010	70
	$512 \mathrm{~K}, 2$ Modbus, 32 MHz	171 CCC78010	70
	$544 \mathrm{~K}, 1$ Modbus, 1 Ethernet, 50 MHz	171 CCC98020	70
	$544 \mathrm{~K}, 1$ Ethernet, $1 \mathrm{l} / \mathrm{O}$ bus, 50 MHz	171CCC96020	70
	544 K, IEC Exec, 1 Modbus, 1 Ethernet, 50 MHz	171CCC98030	70
	544 K, IEC Exec, 1 Ethernet, 1 I/O bus, 50 MHz	171CCC96030	70
Option adapters	Modbus Plus, single port	172PNN21022	77
	Modbus Plus, dual redundant ports	172PNN26022	77
	RS 232/RS 485 serial port	172JNN21032	77
Discrete input bases	24 VDC 16 inputs	170ADI34000	19
	24 VDC 32 inputs	170ADI35000	19
Discrete output bases	24 VDC 16 solid state outputs 0.5 A	170ADO34000	19
	24 VDC 32 solid state outputs0.5 A	170 ADO35000	19
	DC/AC 6 relay form "C" outputs 5 A	170ADO83030	19
Discrete I/O bases	24 VDC 16 inputs/16 outputs 0.5 A	170ADM35010	19
	24 VDC 16 fast inputs/16 outputs 0.5 A	170ADM35011	19
	24 VDC 16 inputs/16 outputs 0.5 A	170ADM35015	19
	24 VDC 16 inputs wiring check/ 12 outputs 0.5 A	170ADM39010	19
	24 VDC 16 inputs/8 outputs 2 A	170ADM37010	19
	12 to 60 VDC 16 inputs/16 outputs 0.5 A	170ADM85010	19
	24 VDC 10 inputs/AC or DC/8 relay 2A	170ADM39030	19
		170ARM37030	19
Analog input bases	16 single-ended inputs 12 bits + sign	170AAI14000	34
	8 differential inputs 15 bits + sign	170AAI03000	34
Discrete and analog I/O bases	4 differential analog inputs/2 analog outputs	170AMM09000	34
	4 discrete inputs/2 discrete outputs	170AMM09001	34
	6 analog inputs/4 analog outputs	170ANR12090	34
	8 discrete inputs/8 discrete outputs	170ANR12091	34
Specialty I/O bases	High-speed counter base, 2 independent counters 200 kHz max.	170AEC92000	42
	I/O base with Modbus RS 485 communication port and 120 VAC 6 inputs/3 outputs $0,5 \mathrm{~A}$	170ADM54080	42

References			
Description	Language	Reference	Weight kg
Momentum I/O bases user guide	English	870 USE00200	-
	French	870 SSE00201	-
	German	870USE00202	-
	Spanish	870 SEE0203	-
High-Speed counter base (170 AEC 920 00) user guide	English	870 SSE00800	-
	French	870 SE 00801	-
	German	870 SE 00802	-
M1/M1E processor adapters and option adapter user guide	English	870 USE10110	-
	French	870 SE10111	-
	German	870 SEE10112	-
	Spanish	870 USE10113	-
InTERBus communication adapters user guide	English	870 SE01000	-
	French	870 USE01001	-
	German	870 USE01002	-
	Spanish	870USE01003	-
InTERBus communication adapter user guide	English	870 USE00300	-
	French	870 USE00301	-
Profibus DP communication adapter user guide (includes the GSD configuration software on $3.5^{\prime \prime}$ disk)	English	870 USE00400	-
	French	870USE00401	-
	German	870 SSE00402	-
Modbus Plus communication adapter, 170 PNT Series user guide	English	870 USE10300	-
	French	870 USE10301	-
	German	870 USE10302	-
Modbus Plus communication adapter, 170 NEF Series user guide	English	870 SE11100	-
Fipio communication adapter (170 FNT 11000) user guide	English	870USE00500	-
	French	870USE00501	-
	German	870 USE00502	-
	Spanish	870USE00503	-
Fipio communication adapter (170 FNT 110 01) user guide	English	870USE10500	-
	French	870USE10501	-
	German	870USE10502	-
	Spanish	870USE10503	-
DeviceNet communication adapter user guide (includes the EDS configuration software on $3.5^{\prime \prime}$ disk)	English	870 SSE10400	-
Fipio Bus / Fipway network reference manual	English	TSXDRFIPE	-
	French	TSXDRFIPF	-
	German	TSXDRFIPG	-
	Spanish	TSXDRFIPS	-
Modbus Plus network planning and installation guide	English	890 USE10000	-
	French	890 USE10001	-
	German	890 USE10002	-
	Spanish	890USE10003	-
Modbus Plus network BM85 bridge multiplexer user guide	English	890 USE10300	-
Ethernet TCP/IP network 10BASE-T and 100BASE-TX	English	490USE13300	-
	French	490USE13301	-
	German	490USE13302	-
	Spanish	490USE13303	-
Modbus/TCP/IP Ethernet communication adapter user guide	English	870 USE11400	-
	French	870 USE11401	-
	German	870USE11402	-
	Spanish	870USE11403	-

XMIT Function Block version 3.0 user quide	English	840USE11300	-

Technical information

Automation products certifications

In some countries, certification of certain electrical components is enforced by law. A standard conformity certificate is then issued by the official organization. Each certified product must carry approval symbols when enforced.
Use on board merchant navy vessels generally requires prior approval
(= certification) of an electrical device by certain marine classification authorities.

Key	Certification body	Country
CSA	Canadian Standards Association	Canada
C-Tick	Australian Communication Authority	Australia
UL	Underwriters Laboratories	USA
Key	Classification authority	Country
ABS	American Bureau of Shipping	USA
BV	Bureau Veritas	France
DNV	Det Norske Veritas	Norway
GL	Germanischer Lloyd	Germany
GOST	Institut de recherche Scientifique Gost Standardt	C.I.S., Russia
LR	Lloyd's Register	United-Kingdom
RINA	Registro Italiano Navale	Italy
RMRS	Register of Shipping	C.I.S.
The		

The table below shows the situation as of 01/06/2005 for certifications obtained or pending from organizations for base PLCs. An overview of certificates for
Telemecanique products is available on our Internet web site:
www.telemecanique.com

Product certifications

(1) Hazardous locations: CSA 22.2 no. 213, certified products are suitable for use in Class I, division 2, groups A, B, C and D or non-hazardous locations only.
(2) Depending on product, consult our site: www.telemecanique.com
(3) cULus north-american certification (Canada and US).
(4) Only XBT F/FC.
(5) Depending on product, see pages of characteristics in this catalog.

Local certifications		
BG	Germany	TSXDPZ10D2A safety module (TSX Micro) TSXPAY262/282 safety modules (Premium)
AS-Interface	Europe	TWDNOI10M3 master module (Twido)
	TSXSAZ10 master module (TSX Micro) 	TSXSAY100 / 1000 master modules (Premium)
		TBXSAP10 Fipio bus/AS-Interface bus gateway

Technical information
 Automation products certifications
 Community regulations

Marine classification							
	Marine classification des authorities						
Certified Pending certification	ABS ABS	BV	DNV	GL	LR	RINA	RMRS
	USA	France	Norway	Germany	Unit.-Kingdom	Italy	C.I.S.
Advantys STB							
Advantys Telefast							
ConneXium				(1)			
Lexium 05							
Lexium 17D							
Magelis i PC							
Magelis XBT G			(2)				
Magelis XBT F/FC/H/P/E/HM/PM							
Magelis XBT-N/R				(3)		(3)	
Modicon Momentum							
Modicon PL7							
Premium Unity	(3)						
Modicon Concept							
Quantum Unity							
Modicon TSX Micro							
TBX							
Twido			(1)	(1)	(1)		
Twin Line							

(1) Depending on product, consult our site: www.telemecanique.com
(2) Except Magelis XBTG2110
(3) Request for Marine certifications forecast $4^{\text {th }}$ quarter 2004.

Community regulations

European directives

The opening of European markets implies a harmonization of regulations in the various European Union member states.
European Directives are documents used to remove obstacles to the free movement of goods and their application is compulsory in all states of the European Union. Member states are obliged to transcribe each Directive into their national legislation and, at the same time, to withdraw any conflicting regulations.
The Directives, particularly those of a technical nature with which we are concerned, only set objectives, called "general requirements".
The manufacturer must take all necessary measures to ensure that his products conform to the requirements of each Directive relating to his equipment.
As a general rule, the manufacturer affirms that his product conforms to the necessary requirements of the Directive(s) by applying the $\mathbf{C} \epsilon$ label to his product. $\boldsymbol{\epsilon} \in$ marking is applied to Telemecanique products where relevant.

The significance of $C \in$ marking

- C \in marking on a product means that the manufacturer certifies that his product conforms to the relevant European Directives; it is necessary in order that a product which is subject to a Directive(s) can be marketed and freely moved within the European Union.
■ C \in marking is intended solely for the national authorities responsible for market regulation.

For electrical equipment, only conformity of the product to standards indicates that it is suitable for use, and only a guarantee by a recognized manufacturer can ensure a high level of quality.
One or more Directives, as appropriate, may apply to our products, in particular:
■ The Low Voltage Directive 72/23/EEC amended by Directive 93/68/EEC: © ϵ marking under the terms of this Directive is compulsory as of 1 January 1997.
■ The Electromagnetic Compatibility Directive 89/336/EEC, amended by Directives 92/31/EEC and 93/68/EEC: C \in marking on the products covered by this Directive has been compulsory since 1 January 1996.

The system designer must use devices external to the SCADA to protect against active faults, which are not indicated and are judged to be dangerous to the application.
This may require solutions from various different technologies such as mechanical, electromechanical, pneumatic or hydraulic devices (for example, directly wiring a limit switch and emergency stop switches to the coil of a movement control contactor).

043509383. 77

110XCA20300 70
110XCA20300 77
110XCA20400 70
110XCA20400 77
110XCA28201 70
110XCA28201 77
110XCA28202 70
110XCA28202 77
110XCA28203 70
110XCA28203 77
170. 95

170AAI03000 34
170AAI03000. 96
170AAI03000C . . . 95
170AAI14000. 34
170AAI14000. 96
170AAI14000C . . . 95
170AAI52040..... . . 34
170AAI52040C 95
170AAO12000 34 170AAO92100 34 170AAO92100C. . . . 95
170ADI34000. 19
170ADI34000. 96
170ADI34000C 95
170ADI35000. 19
170ADI35000. 96
170ADI35000C 95
170ADI54050. 19
170ADI74050. 19
170ADM35010. 19
170ADM35010. 96
170ADM35010C . . 95
170ADM35011. 19
170ADM35011. 96
170ADM35015. 19
170ADM35015. 96
170ADM37010. 19
170ADM37010. 96
170ADM37010C . . . 95
170ADM39010. 19
170ADM39010. 96
170ADM39030. 19
170ADM39030. 96
170ADM39030C . . . 95
170ADM54080. 42
170ADM54080. 96
170ADM69051. 19
170ADM85010. 19
170ADM85010. 96
170ADO34000. 19
170ADO34000. 96
170ADO34000C . . . 95
170ADO35000. 19
170ADO35000..... . 96
170ADO35000C . . . 95
170ADO53050. 19
170ADO54050. 19
170ADO73050..... 19
170ADO74050..... 19
170ADO83030. 19
170ADO83030.... . 96
170AEC92000 42

170AEC92000 96 170AMM09000 34 170AMM09000 96 170AMM09000C. . . . 95 170AMM09001 34 170AMM09001 96 170ANR12090 34 170ANR12090 96 170ANR12091 34 170ANR12091 96 170ARM37030 19 170ARM37030 96 170BDM09000 19 170BDM09000 35 170BNO67101 57 170BSM01600 19 170CPS11100 71 170DNT11000 59 170ENT11001 49 170ENT11001 96 170ENT11002 49 170ENT11002 96 170FNT11000. 55 170FNT11001. 55 170FNT11001. 96 170 INT11000 57 170INT11003 57 170 INT11003 96 170INT12000 57 170LNT71000. 61 170MCI00700 57 170MCI02010. 77 170MCI02036 77 170MCI02080 77 170MCI02110..... . 53 170MCI02120. 53 170MCI02120.... . . . 77 170MCI02136 53 170MCI02180. 53 170MCI02180 77 170MCI04110. 77 170MCl10001..... . . 57 170NEF11021 53 170NEF16021 53 170PNT11020 53 170PNT16020 53 170XCP10000 57 170XCP20000 19 170XCP20000 35 170XTS00100. 19 170XTS00100. 35 170XTS00200. 19 170XTS00200. 35 170XTS00301. 19 170XTS00301. 35 170XTS00401. 19 170XTS00401. 35 170XTS00501. 19 170XTS00501. 35 170XTS00601. 19 170XTS00601. 35 170XTS00701. 19 170XTS00701. 35 170XTS00801. 19 170XTS00801. 35
170XTS00900 57

170XTS01100 71 170XTS01200 71 170XTS02000 53 170XTS02000 77 170XTS02100 53 170XTS02100 70 170XTS02100 77 170XTS02200 77 170XTS04000 70 170XTS04000 77 170XTS04100 77 170XTS04200 77 170XTS06000 61 170XTS10000 19 170XTS10000 35 170XTS10000 42 170XTS10000 59 170XTS10000 61 170XTS12000 19 171CCC76010. 70 171CCC76010. . . . 96 171CCC76010C . . . 95 171CCC78010. . . . 70 171CCC78010. 96 171CCC96020. 70 171CCC96020. 96 171CCC96020C . . . 95 171CCC96030. 70 171CCC96030. 96 171CCC96030C . . . 95 171CCC98020. 70 171CCC98020. 96 171CCC98030. 70 171CCC98030. 96 171CCS70000. 70 171CCS70000. . . . 96 171CCS70010. 70 171CCS70010. 96 171CCS76000. 70 171CCS76000. 96 171CCS76000C . . . 95 171CCS78000. 70 171CCS78000. 96 172JNN21032 77 172JNN21032 96 172JNN21032C. . . . 95 172PNN21022. 77 172PNN21022. . . . 96 172PNN21022C . . . 95 172PNN26022. 77 172PNN26022. 96 332SPU47001V26. . 89 372ESS47101..... 89 372ESS47101..... 89 372ESS47201.... . . 89 372ESS47400 89 372ESS47401..... 89 372ESS47403 89 372ESS47410 89 372ESS48501..... . 89 372HVA16030V25. . 89 372SPU47101V26. . 89 372SPU47201V26. . 89 372SPU47401V26. . 89

372SPU47411V26 . . 89 372SPU47421V26 . . 89 372SPU47431V26 . . 89 372SPU47701V26 . . 89 372SPU71001PLDV 93 372SPU71001PLTE. 93 372SPU71001PLTH. 93 372SPU78001DMAN . 93 372SPU78001EMAN . 93 372SPU78001FMAN . 93 372SPU78001PDEV 93 372SPU78001PSEV 93 372SPU78001PSSV 93 372SPU78001PSTE 93 372SPU78001PSTH 93 372SPU78001SITE . 93 372SPU78001SMAN . 93 372SPU78101PONL 93 372SPU78401LPTE. 93 372SPU78401LPTH. 93 372SPU78401LPUP 93 372SPU78401SEAT 93 424244739........ . 70 424244739. 77 490NAA27101 53 490NAA27101 ... 77 490NAA27102 53 870USE00301. 97 490NAA27102 77 870USE00400. 97 490NAA27103 . . . 53 870USE00401. 97 490NAA27103 77 870USE00402. 97 490NAA27104 . . . 53 870USE00500. 97 490NAA27104 77 870USE00501. 97 490NAA27106 53 870USE00502. 97 490NAA27106 . . . 77 870USE00503. . . . 97 490NAB00010 53 870USE00800. 42 490NAD91103 59 870USE00800. 97 490NAD91104 59 870USE00801..... 97 490NAD91105 59 870USE00802. 97 490NOC00005 . . . 83 870USE01000. 97 490NOR00003 83 870USE01001. 97 490NOR00005 83 870USE01002. 97 490NOR00015 83 870USE01003. 97 490NOT00005 83 870USE10110. 97 490NTC00005 83 870USE10111..... 97 490NTC00005U . . . 83 870USE10112. 97 490NTC00015 83 870USE10113. 97 490NTC00015U ... 83 870USE10300. . . . 97 490NTC00040 83 870USE10301. 97 490NTC00040U . . . 83 870USE10302. 97 490NTC00080 83 870USE10400. 97 490NTC00080U ... 83 870USE10500. 97 490NTW00002 83 870USE10501. 97 490NTW00002U .. 83 870USE10502. 97 490NTW00005 . . . 83 870USE10503. 97 490NTW00005U .. 83 870USE11100. 97 490NTW00012. . . . 83 870USE11400. . . . 97 490NTW00012U .. 83 870USE11401. 97 490NTW00040.... 83 870USE11402. 97 490NTW00040U .. 83 870USE11403. 97 490NTW00080 83 890USE10000. 97 490NTW00080U .. 83 890USE10001. . . . 97 490USE13300 97 890USE10002. 97 490USE13301 97 890USE10003. 97 490USE13302 97 890USE10300. . . . 97 490USE13303 97 900NAD21110 77

Product Reference Index

990NAD21110 53
990NAD21130 53
990NAD21130 77
990NAD21810 53
990NAD21830 53
990NAD21910 53
990NAD21930 53
990NAD23000 53
990NAD23000 77
990NAD23010 53
990NAD23010 77
990NAD23011 53
990NAD23011 77
990NAD23020 53
990NAD23021 53
990NAD23022 53
ASMBKT085 53
ASMBKT085 77
ASMBKT185 77
CER001 19
CER001 35
KAB3225LI 57
KABPROFIB 59
TCSESU051F0 82
TSXDRFIPE 97
TSXDRFIPF 97
TSXDRFIPG 97
TSXDRFIPS 97
TSXFPACC12 55
TSXFPACC14 55
TSXFPACC2 55
TSXFPACC4 55
TSXFPCC100 55
TSXFPCC200. 55
TSXFPCC500 55
TSXIBSCA100 57
TSXIBSCA400 57
TSXPBSCA100 ... 59
TSXPBSCA400 ... 59
XZCC12FCM50B.. 82
XZCC12FDM50 82
XZCP1164L 82
XZCP1264L 82

[^0]: Pages

[^1]: Group of channels

[^2]: (1) Transparent Ready Class A10 and B20, for more details, consult our catalog "Transparent Ready, Ethernet TCP/IP and Web technologies"

[^3]: Description
 The 170DNT11000 Profibus DP Communication Adapter comprises on the front panel:

 1 LED Status Indicators comprising: BF (green), bus fault.
 2 A 9-Pin SUB-D connector for connection to the Profibus DP Network.
 3 Area for Label (label shipped with I/O base).
 4 Rotary switches for slave addresses.

[^4]: Analog I/O Library
 The ANA_IO library is used to process analog values.

