

of transparent objects

Solutions for a world of clear materials

Living in a clear material world

Reliably detect transparent objects

The world of transparent material. Detection with perspective. Automation with vision .
A variety of applications, different solutions Ultrasonic vs. capacitive vs. optical solutions 6 - 7
Reliable detection of transparent objects - Retro-reflective photoelectric sensors of SICK
CTA, continuous threshold adaptation
Retro-reflective photoelectric sensors - reliable under all application conditions
Many paths, one goal: The right selection of sensors 14 - 15
Reflectors for industrial sensors
Technical data

The world of transparent materials. Detection with perspective. Automation with vision

Clear plastic packaging, bottles made of glass or PET, vials and dropper, flat, tube and hollow glass, plastic wrap for securing loads on pallets – automation specialists have to find their way in the world of transparent materials in many manufacturing processes.

Pharma & Cosmetics The task:

 Reliable detection, positioning of small transparent vials and flasks

The challenge:

- Precise, responsive and repeatable
- Hygienic design required
- Sometimes small space requirements

The solution:

- WL4G in hygienic design
- WLL180

4

Food industry The task:

Count, detect and position
 packaged foods

The challenge:

- Reliable detection of different packaging shapes and surfaces
- Sometimes very small object sizes
- Precision positioning of products

The solution:

• WL12G-3

Dairies

The task:

• Reliable detection, positioning and monitoring of e.g., bottles or beakers

The challenge:

- Agressive cleaning processes
- Wetness, humidity
- Aggressive chemical environments

The solution:

- WL12G-3
- WL4G-3 Inox

Beverage industry The task:

 Detect, count, select bottles of all kinds

The challenge:

- Harsh application conditions
- Aggressive cleaning processes
- Simple commissioning required

The solution:

- WL12G-3
- WL4G-3

Packaging technology The task:

- Reliably detect, position and count containers with transparent wrap
- Monitor the presence of products

The challenge:

- Reliable response to fast
 production processes
- Containers vary greatly in shape and surface
- Transparency of plastic wrap varies greatly

The solution:

- WL27 MultiPac
- WL12G-3P:S12

A variety of applications, different solutions. Ultrasonic vs. capacitive vs. optical solutions

	I))		
Sensor solution	Ultrasonic	Capacitive	
Strengths	Reliable detection results regardless of surface gloss or object contour	Reliable detection results regardless of surface gloss or object contour	
	Reliable detection results regardless of dirt or high-pressure cleaning	Reliable detection results regardless of dirt or high-pressure cleaning	
Considerations	Switching distance limited to 150 mm	Switching distance limited to 20 mm	
	Complex alignment, no visible reference point	Complex alignment, no visible reference point	
	Narrow gaps are not detected reliably	Narrow gaps are not detected reliably	
	Precision sufficient for presence monitoring	Precision sufficient for presence monitoring	
	Applications with higher requirements cannot be solved	Applications with higher requirements cannot be solved	
	Slow response times, unsuitable for the detection of fast moving targets.	Slow response times, unsuitable for the detection of fast moving targets	
	Beam dependent on installation position (very sensitive to angular alignment)	Susceptible to cross talk from neighboring targets	
	Detection quality is marginal for flat targets		
	Susceptible to cross talk		

Fiber-optic sensors and fibers	Photoelectric proximity sensors	Retro-reflective photoelectric sensors
Ideal for very limited available space	High precision, suitable for "precise positioning" tasks	High precision, suitable for "precise positioning" tasks
Ideal for applications with Ex protection specification	Reliably detects very small objects and narrow gaps	Reliably detects very small objects and narrow gaps
Ideal for applications with TU > 70° C	Quick response times: High-speed product runs are reliably detected	Quick response times: High-speed product runs are reliably detected
Ideal for applications in dynamic environments (robots)	Easy to position, highly visible light spot	Easy to position, highly visible light spot
Large range of product types for fibers	Large range of product types	Large range of product types
Evaluation electronics physically isolated from detection zone	Cost-effective WT solutions available for basic applications	Cost-effective WL solutions available for basic applications
No interference by EMC		Detection results regardless of surface gloss or object contour
Quick response times: High-speed product runs are reliably detected		Universal use and application possibilities
Additional functionality: Continuous threshold Apaptation of switching threshold to increase sensor reliability		Switching distance up to 5000 mm possible
WLL in one-way operation range up to 20 m possible, simple commissioning		Additional functions, such as automatic continuous threshold adaptation for optimal adjustment to the application conditions
 Sensing range limited in proximity mode	Switching distance limited to 1000 mm	Reflector necessary
Detection result highly dependent on fiber selection, amplifier is susceptible to mechanical damage	Detection result highly dependent on surface gloss or object contour	Detection quality highly dependent on the reflector selection
Solution very application-specific, often difficult to use universally	Detection result highly dependent on dirt or high-pressure cleaning	
Price	WT solution very application-specific, often difficult to use universally	Conclusion: Photoelectric rote
		 Sensors provide maximum System benefits: Maximum appli
		Maximum object detection Maximum precision response
		 Maximum user-friendliness Maximum results

T

7

Reliable detection of transparent objects - retro-reflective photoelectric sensors of SICK

The Photoelectric retro-reflective sensors from SICK is perhaps the most comprehensive on the market – it covers nearly all expectations, requirements and tasks in the world of automation.

It offers:

- Rapid response times
- Fast, simple commissioning
- · User-friendly designs
- Latest ASIC technology and IO-Link capability
- Automatic continuous threshold adaption
- Rugged device versions

WLL180: Fill level monitoring

WL12G: Transparent wrap detection

WL12G-3: PET bottle detection

WL4-3 / WL4G-3: Tray, transparent beaker detection

VL180: Tray detection

WL11-2P2432: Bottle detection

WL4: Inox, bottle detection in aggressive environments

WL12G-3: Foil monitoring

WLG4S-3: Transparent packaging material detection

The benefits:

- Opens up a broad range of applications
- Makes universal integration options possible
- High reliability and reliable object detection under extreme, changing application conditions
- Increases the added value of the system

9

CTA, continous treshold adaptation

In the automated world, the aim is to minimize machine downtime. Thanks to innovative continuous threshold adaptation, cleaning intervals are extended, thus increasing sensor availability, overall system availability and productivity.

Continuous threshold adaptation

- In the event of contamination, the sensor adapts to the new conditions
- Sensor maintenance only when heavily contaminated
- Automatic adjustment of the original thresholds after cleaning
- Two teach options are possible

Signal attenuation by an object in the light path

- Transparent objects weaken the light beam
- Signal attenuation depends on the transparency of the detected object
- With the help of continuous threshold adaptation or the autocollimation principle, highly transparent objects such as films and PET bottles are reliably detected

	HIER	
SICK		
2P24-32 2 30V Class 2 30mA 60°C 10 m		

Implemented in	Minimum contamination	Readjustment period	Strengths	Limitations
WL12G-3 WL11G-2 WL11-2P2432 WL8G GL6G GRL18SG	> 1% to max. 8%	not applicable	More reliable functionality in applications with very demanding conditions, which can mimic contamination: • Foil monitoring, foil tear, tear strip inspection • Cleaning processes during production (e.g., at breweries) • Dynamic visibility to reflector, e.g., rotating rollers with unbalance mass	Sensor located more quickly in the performance reserve area. No automatic response to visibility in the application: • More frequent cleaning intervals • More frequent interruptions in production • Reduced productivity • No maximum utilization of the system
WL4G-3 WL9G-3 WL27 Reflex Array WLL180	Min. 1% deviation from current reference value	Approx. 5 ms	 Readjustment in parallel with the current operation possible Readjustment independent of the presence of product Flexible application possibilities 	 Static operation or partial covering of the reflector e.g., bottle in the visible area; this is evaluated as contamination and readjustment is activated unnecessarily: Readjustment has an effect on the switching frequency, sensor becomes slower Readjustment has an effect on response time, sensor reacts more slowly
WL12G-3	Min. 1% deviation from current reference value	6 x switching cycles	 Ideal readjustment procedure for: Dynamic product sequences, e.g., flow of bottles Partial covering of reflector, e.g., bottle in visible area Slower product infeed into the visible area, e.g., tray positioning 	Readjustment time dependent on production run speed and product intervals – without intervals no readjustment e.g., foil tear monitoring: • Readjustment has an effect on switching frequency and response time; sensor becomes slower and reacts sluggishly

Examples of the signal attenuation of various materials						
Approx. 10% signal attenuation	Clean PET bottles, clear glass, thin and clear films (e.g. cellophane), household plastic film, plastic wrapping					
Approx. 18% signal attenuation	Clean clear glass bottles, thick films, film and wrapping folded multiple times					
Approx. 40% signal attenuation	Green and brown glass, colored glass bottles					

Retro-reflective photoelectric sensors - reliable under all application conditions

Ideal for everyday industrial use:

- · Rugged sensor designs
- Reliable object detection
- · Easy to align
- Communication capabilities and enhanced functionality

IO-Link

IO-Link opens up the possibility of sensor communication with higher-level automation systems. Photoelectric retro-reflective sensors can generate additional sensor information at vulnerable points in the manufacturing and realize new maintenance and diagnostic concepts. Applications are seen through the eyes of the sensor.

Housing materials

The application conditions are often rough and vary greatly.

With different housing materials, we respond specifically to these conditions and make available sensors optimally equipped for reliable use in industrial environments.

ABS housing

- Rugged plastic (e.g., used in food processors)
- Thermally and chemically very durable

Vistal housing

- Housing made of high-strength, glass-fiber reinforced plastic
- Material hardness factor similar to metal
- Extremely resistant to mechanical stress

Approvals:

- Proof of industrial rugedness
- Internationally recognized
 test methods
- Global sensor deployment
 possible

EC&LAB

CE RoHs

Zinc die-cast housing

- Ideal protection in harsh environments, tough
- Increase in chemical resistance due to PTFE coating

- Stainless steel / Inox or hygienic design housing • Housing with smooth
- Housing with smooth surface, dirt and grime have no chance
- Maximum chemical resistance to almost all detergents and disinfectants

Transmission sources

Photoelectric retro-reflective sensors use various transmission sources to achieve optimum optical performance, to ensure universal object detection and for simple and fast commissioning.

PinPoint

- · Easily visible red light
- Easily and quickly aligned
- Reliable detection of small objects
- Universally deployable, demanding applications

Laser

- Very small light spot
- · Very easy to position
- Reliable detection of small targets
- Ideal for demanding applications

Infrared light, IR

- Ideal for very demanding applications that require excess gain
- Ideal for liquid detection in bottles

User-friendliness

User-friendliness plays a key role in sensors. Simple and fast commissioning without extensive training or specialized staff. 360-degree, highly visible status LEDs make sensor diagnostics quick and effective.

Many paths, one goal: The right selection of sensors.

The range of sensors available from SICK are designed to meet the needs of different applications and to ensure solutions that will meet the demands of tomorrow. The application and its constraints determine which sensor solution will yield maximum detection results.

- Task?
- What experience do operators have in relation to commissioning and ope rating opto-electronic sensor?
- Which housing design and size are preferred?
- What mechanical, thermal and chemical conditions are known?
- Should the sensor have additional functionality, e.g., monitoring of the received signal?
- What knowledge do operators have in relation to operating opto-electronic sensor?

It is crystal clear, the SICK portfolio is always the right choice in packaging technology, the beverage industry and the glass industry

Series		WL12G	WL11G
For detection of	Thin-walled PET bottles	•	•
	Thin-walled glass bottles	•	•
	Transp. liquid in bottles	•	
	Transp. packaging materials	•	•
	Plastic film	•	•
With continuous threshold adaptation	СТА	•/without	•
Readjustment principle	Time-controlled		
	Event-driven	•	
Switching threshold level	10 %	•	•
	20 %	•	
	40 %	•	
Temperature compensation		•	
Light source	Red PinPoint LED	•	•
	Red light laser, laser class 2		
	Infrared light	•	
Light spot size		Ø 25 mm at 1.5 m	Ø 25 mm at 1.5 m
Optics	Autocollimation	•	•
	Standard		•
Sensing range		04 m	05 m
Sensitivity adjustment		Teach-In / Poti	Poti
Switching frequency		1500/s	1500/s
Ambient temperature range		-40°C+60°C	-40°C+60°C
Housing design	Cubic	•	•
	Cylindrical		
Housing material	Plastic		•
	VISTAL		
	Metal	•	
	Stainless steel		
Communication capability	I/O-Link	•	

П

		Ì						a constant of the second secon	
WLG190T	WL9G-3	WLG4S	WLG4S INOX	WL8G	GL6G	WLL180 T	WL27 Reflex Array	GRL18SG	MHL15
	•	•	•			•	•		
•	•	•	•	•	•	•	•	•	•
	•	•	•			•			
•	•	•	•	•	•	•	•	•	•
•	•	•	•			•			
	•	•	•			•	•		
	•	•	•			٠	•		
•	•	•	•			•	•		
				•	•			•	
	•	•	•						
	•	•	•	•	•	•	•	•	•
						•			
Ø 25 mm	Ø 45 mm	Ø 45 mm	Ø 45 mm	Ø 70 mm	Ø 25 mm	LL type	50 x 10 mm	Ø 25 mm	Ø 25 mm
at 1.0 m	at 1.5 m	at 1.5 m	at 1.5 m	at 2.0 m	at 1.0 m	Gependent	at 2.0 m	at 1.0 m	at 1.0 m
•	•	•	•	•		Fiber-optic			
08 m	05 m	05 m	05 m	03 m	0.076 m	LL type dependent	04.5 m ¹⁾	0.037.5 m	0.0351.9 m
Teach-In	Teach-In	Teach-In	Teach-In	Poti	Poti	Teach-In	Teach-In	Poti	Poti
700/200/100/s	1000/s	1000/s	1000/s	1000/s	1000/s	31,200/s	200/s	1000/s	1000/s
-10°C+40°C	-40°C+60°C	-40°C+60°C	-30°C+60°C	-25°C+55°C	-25°C+55°C	LL type dependent	-30°C+60°C	-25°C+55°C	-25°C+55°C
•	•	•	•	•	•	•	•		
								•	•
•		•		•	•	•	•	•	•
	•								
			•						
	•	•	•						

 $^{\mbox{\tiny 1)}}$ min. distance between sensor and reflector 0.5 m.

Reflectors for industrial sensors.

- Reflectors are the indispensable counterpart for each photoelectric retro-reflective sensor. Together they form a reliable functional unit. Reliable detection of objects can only be guaranteed, including under critical application condi tions, if both components are optimally coordinated with one another.
- The scanning range and detection accuracy of a photoelectric retro-reflective sensor are impacted significantly by the quality and geometric size of the reflector used.
- The larger the reflectors, the greater the performance reserve and the greater the sensor scanning range.

Standard reflectors (round and square)

The standard reflectors from SICK differ in size, geometry and mounting options. The large selection of reflectors in different sizes guarantees optimal sensor operation at all times and perfect integration into systems.

Fine triple reflectors

Fine triple reflectors are specially developed for use with laser photoelectric retro-reflective sensors. Their particularly small reflex triple structure enables the small light spot to be beamed across several triples simultaneously at all times A stable reflection signal for the sensor is thereby guaranteed even when the light spot passes over the reflector. Due to their homogeneous light reflection properties, fine triple reflectors are also suitable for use with photoelectric sensors for detecting transparent materials.

Special reflectors

Special application conditions require specially customized sensors – and suitable reflectors of course. For this reason, SICK offers a wide range of special reflectors that meet the most varied requirements. The range includes stainless-steel reflectors to chemically resistant reflectors and high-temperature reflectors to dust protection solutions – and much more.

Reflective tapes

Reflective tapes are always an alternative where the application does not allow the use of a standard reflector. However, it should be noted here that sensor scanning ranges are reduced when using standard reflective tape (e.g., REF-Plus, REF-DG). The high-performance REF-AC1000 reflective tape from SICK on the other hand enables virtually the same scanning ranges as a standard reflector of the same size. The REF-AC1000 is also particularly suited for use with laser photoelectric retro-reflective sensors.

The right reflector for virtually all applications

Standard plastic reflectors or reflective tapes can handle most applications in industrial environments. However, special applications also require special sensors and reflectors. For this reason, SICK offers a large number of special solutions:

- Chemically resistant reflectors
- Stainless-steel reflectors
- Heated reflectors (regulated and unregulated)
- Reflectors for high-temperature applications
- Anti-fog reflectors
- Single triple glass reflectors
- Dust-proof and air-purged reflector solutions
- Large, premounted reflector plates

- Rugged die-cast zinc housing with optional Teflon® coating
- Reliable detection of transparent
 objects
- Precise autocollimation optics
- Robust sensors for industrial use

Your benefits

- Reliable detection of transparent objects - from PET bottles to transparent film - due to superior ASIC (application-specific integrated circuit) technology
- High immunity to ambient conditions reduces false readings
- Red PinPoint LED provides quick and easy alignment of sensor
- Precise switching characteristics, fast response times and high performance ensure superior reliability and productivity in nearly every application type

For more information, just enter the link or scan the QR code and get direct access to technical

data, CAD design models, operating instructions, software, application examples and much more.

www.mysick.com/en/W12G

- Precise PinPoint LED technology with highly visible light spot
- Dovetail mounting mounting holes
 and oblong holes
- Highly visible status LEDs
- Withstands mechanical, thermal, chemical and electromagnetic factors, providing increased industrial reliability
- Flexible mounting and installation due to rotatable connector and versatile mounting options
- IO-Link enables quick remote diagnostics and maintenance (optional)

Ordering information

- Detection principle: Autocollimation
- Sensing range max.: 0 m ... 4 m (PL80A.)

	й.		
÷.	Ċ.	21	
	21	21	
21	- 57		

Other models available at www.mysick.com/en/W12G

Housing material	Continuous threshold adaption	Switching output	Switching mode	Adjustment	Connection	Model name	Part no.
						WL12G-3P2572	1053535
		PNP	Light/dark-switching	Teach-in button	Connector M12, 5-pin	WL12G-3P25821)	1053536
					, • p	WL12G-3V25722)	1053537
Motal		NDN	light/dark switching	Teach-in button	Connector M12, 5-pin	WL12G-3N2572	1053530
		INFIN	Light/ dark-Switching			WL12G-3W25722)	1053538
	- PNP,	PNP	Light/dark-switching	Potentiometer, 11-turn	Connector M12, 4-pin	WL12G-302431	1041457
		PNP, NPN	Light/dark-switching	Potentiometer, 11-turn	Connector M12, 5-pin	WL12G-3B2531	1041456
PTFE		PNP	Light/dark-switching	Teach-in button	Connector M12, 5-pin	WL12G-3P2572T01	1053546
		NPN	Light/dark-switching	Teach-in button	Connector M12, 5-pin	WL12G-3N2572T01	1053547
	-	PNP, NPN	Light/dark-switching	Potentiometer, 11-turn	Connector M12, 5-pin	WL12G-3B2531T01	1041458

 $^{\scriptscriptstyle 1)}$ Infrared.

²⁾ Plausibility output.

- Retro-reflective for detection of clear material objects
- Rugged housing for industrial use
- PinPoint LED technology with a highly visible light spot
- Space-saving plastic housing in chemically, thermally or mechanically resistant designs

Your benefits

- Superior ASIC ensures reliable detection of transparent objects
- PinPoint LED technology provides a bright, small and precise light spot that enables quick and easy sensor alignment
- Precise switching characteristics ensure high performance even in changing application conditions
- Highly visible 360° status LEDs provide fast and easy commissioning

- Dovetail mounting standard mounting holes and oblong holes
- Highly visible 360° status LEDs
- Simple sensitivity adjustment via potentiometer
- Rugged housing design withstands harsh environments, reducing down-time and maintenance effort
- Uniform housing, mounting and connection systems reduce mounting and installation time
- High immunity to optical interferences reduces false readings and downtime

→ www.mysick.com/en/W11G-2

For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

Other models available at www.mysick.com/en/W11G-2

Switching mode: Light/dark-switching

Detection principle	Sensing range max.	Switching frequency	Switching output	Adjustment	Connection	Model name	Part no.
Standard optics	0.15 m 10 m ¹⁾	200 Hz	PNP	Adjustable, Teach	Connector M12, 4-pin	WL11-2P2432	1048542
Autocollimation	0 m 4 m ¹⁾	1,500 Hz	PNP, NPN	Adjustable, potentiometer, 11-turn	Connector M12, 5-pin	WL11G-2B2531	1041390

1) PL80A.

Other models available at www.mysick.com/en/W9-3_Glass

Ordering information

- Detection principle: Autocollimation
- Switching mode: Light/dark-switching
- Adjustment: Teach

Sensing range max.	Mounting hole	Switching output	Connection	Model name	Part no.
			Cable with plug, M12, 4-pin	WL9G-3P3432	1049084
		PNP	Connector M8, 4-pin	WL9G-3P2232	1049082
	M3		Cable, 4-wire	WL9G-3P1132	1049081
			Connector M12, 4-pin	WL9G-3P2432	1049083
		NPN	Connector M12, 4-pin	WL9G-3N2432	1054152
0 m 5 m ¹⁾			Cable, 4-wire	WL9G-3N1132	1049085
		Connect Connect	Connector M8, 4-pin	WL9M4G-3P2232	1051899
			Connector M12, 4-pin	WL9M4G-3P2432	1051900
	M4	PNP	Cable, 4-wire	WL9M4G-3P1132	1051898
			Connector M12, 4-pin	WL9M4G-3P3432	1051910
		NPN	Cable, 4-wire	WL9M4G-3N1132	1051897

¹⁾ PL80A.

Ordering information

- Detection principle: Autocollimation
- Switching mode: Light/dark-switching

Other models available at www.mysick.com/en/W190_Laser_High_Grade_Glass

Sensing range max.	Switching output	Connection	Model name	Part no.
DND	DND	Cable, 4-wire, 2 m	WLG190T-P122	6022827
0.01 m E E m ¹	PNP	ConnectionModel nameCable, 4-wire, 2 mWLG190T-P122Connector M8, 4-pinWLG190T-P420Cable, 4-wire, 2 mWLG190T-N122Connector M8, 4-pinWLG190T-N420Cable, 4-wire, 2 mWLG190T-P112Connector M8, 4-pinWLG190T-P112Connector M8, 4-pinWLG190T-P410Cable, 4-wire, 2 mWLG190T-N112Connector M8, 4-pinWLG190T-N112Connector M8, 4-pinWLG190T-N112	WLG190T-P420	6022830
0.01 m 5.5 m -		Cable, 4-wire, 2 m	WLG190T-N122	6022823
	NPN	Connector M8, 4-pin	WLG190T-N420	6022826
	DND	Cable, 4-wire, 2 m	WLG190T-P112	6026537
0.01 m 1.8 m ²⁾	PNP	Connector M8, 4-pin	WLG190T-P410	6026538
0.01 m 1.2 m ³⁾		Cable, 4-wire, 2 m	WLG190T-N112	6026535
	INPIN	Connector M8, 4-pin	WLG190T-N410	6026536

¹⁾ P250F.

²⁾ PL80A.

³⁾ P250.

- Setting via teach-in pushbutton
- PinPoint LED technology for highly visible intense light spot
- Versions available with and without polarization filter
- Sensing range from 0.01 4 m

Your benefits

- Reliable and quick setting via the push of a button
- Flat housing design eliminates alignment or mounting brackets, which saves time and money
- Low-cost machine integration due to small dimensions that enable mounting in areas with space restrictions

- Detection of glass with an attenuation of > 8% (version with polarization filter)
- Detection of PET bottles and films with an attenuation of > 8% (version without polarization filter)
- Sensitivity control via cable (optional)
- Quick and easy setup due to highly visible intensive light spot
- The PinPoint LED's well-defined, intense light spot simplifies alignment
- Nearly all transparent objects can be reliably detected

Other models available at www.mysick.com/en/W4-3_Glass

www.mysick.com/en/W4-3_Glass
For more information, just enter the link or scan

For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

Ordering information

- Detection principle: Autocollimation
- Housing material: Plastic
- Switching output: PNP

Housing design	Sensing range max.	Switching mode	Polarisati- on filter	Sensitivity adjustment	Connection	Model name	Part no.
	0.01 m	David		Teach	Cable with plug, M8, 3-pin, 100 mm, PVC	WLG4-3F3182	1028135
	1.6 m ¹⁾	switching	-		Connector M8, 3-pin	WLG4-3F2182	1028134
	1.0 m			Teach, cable	Connector M8, 4-pin	WLG4-3F2284	1028137
Flat		Dark- switching Light- switching		Teach, cable	Cable with plug, M8, 4-pin, 100 mm, PVC	WLG4-3F3234	1028129
	0.01			Teach	Connector M8, 3-pin	WLG4-3F2132	1028127
	0.01 m 4 m -			Teach, cable	Connector M8, 4-pin	WLG4-3F2234	1028130
				Teach	Connector M8, 3-pin	WLG4-3P2132	1029567
		Light/dark- switching		Teach	Connector M8, 4-pin	WLG4S-3P2232	1044186
				Teach, cable	Connector M8, 4-pin	WLG4S-3F2234	1042084
Slim	0.01 m 5 m $^{\scriptscriptstyle 1)}$	Dark- switching		Teach, cable	Cable with plug, M8, 4-pin, 100 mm, PVC	WLG4S-3F3234	1043840
				Teach	Connector M8, 4-pin	WLG4S-3V2232	1042087
		Light- switching		Teach	Cable with plug, M8, 3-pin, 100 mm, PVC	WLG4S-3P3132	1043839

¹⁾ PL80A.

- IP 66, IP 67, IP 68 and IP 69K enclosure rating and Ecolab certified
- Tough stainless steel housing (316L/1.4404)
- Resistant to a variety of common cleaning and disinfection agents
- Modern electrical connection available – M12 connector with pin casting
- PinPoint LED technology provides a highly visible laser-like light spot
- Teach-in via stainless steel pushbutton with a metal membrane
- Continuous threshold adjustment technology reliably detects objects in changing conditions

Your benefits

- Long service life in harsh conditions ensures less downtime and fewer replacement costs
- Reliable detection of all materials, including transparent objects in the pharmaceutical, packaging, and food and beverage industries
- Easy adjustment via a stainless steel metal membrane teach-in pushbutton
- Quick and easy alignment due to highly visible PinPoint emitter LED
- Remote monitoring and quick diagnostics via IO-Link (optional)

Other models available at www.mysick.com/en/W4S-3_Inox_Glass

→ www.mysick.com/en/W4S-3_Inox_Glass For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

Ordering information

- Detection principle: Autocollimation
- Sensing range max.: 0 m ... 5 m (PL80A.)

Housing design	Switching output	Switching mode	Adjustment	Connection	Model name	Part no.
				Connector M8, 4-pin	WLG4S-3P2232V	1046446
		Light/dark-	Teach	Cable with plug, M8, 4-pin, 150 mm, PVC	WLG4S-3P3232V	1046448
		ownorming		Cable with plug, M12, 4-pin, 150 mm, PVC	WLG4S-3P3432V	1046449
	PNP		Cable	Connector M8, 4-pin	WLG4S-3F2235V	1045098
Washdown				Connector M8, 4-pin	WLG4S-3F2234V	1047653 1048024
		Dark-switching	Teach, cable	Cable with plug, M12, 4-pin, 150 mm, PVC	WLG4S-3F3434V	
			Teach	Connector M8, 4-pin	WLG4S-3V2232V	1046447
		Light/dark-	Teach	Connector M12, 4-pin, PVC	WLG4S-3N2432V	1054728
	NPN	switching		Cable, 4-wire, 2 m, PVC	WLG4S-3N1132V	1046450
		Daula autitalain e	Cable	Cable, 4-wire, 2 m, PVC	WLG4S-3E1135V	1046438
		Dark-switching	Teach, cable	Cable, 4-wire, 2 m, PVC	WLG4S-3E1134V	1048027
Hygienic	PNP	Dark-switching	Teach, cable	Cable with plug, M8, 4-pin, 150 mm, PVC	WLG4S-3F3234H	1048121

- Autocollimation
- Standard miniature housing with M3 threaded mounting holes
- Light/dark-switching selectable via rotary switch

Your benefits

- Reliable object detection of transparent objects even at the shortest distances (no blind spot) or through narrow gaps
- Highly visible light spot makes alignment quick and easy
- Reliable detection of all materials, including small and/or transparent objects, min. attenuation 15 %

- Adjustable sensing range
- All necessary accessories (BEF-W100-A and P250) are included with delivery
- All necessary accessories (bracket and reflector) are included with delivery, reducing installation and procurement costs
- M3 mounting hole provides quick installation

Other models available at www.mysick.com/en/W8G

→ www.mysick.com/en/W8G

For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

Ordering information

- Detection principle: Autocollimation
- Switching mode: Light/dark-switching

Sensing range max.	Switching output	Connection	Model name	Part no.
	DND	Utput Connection Model name Cable, 3-wire WL8G-P1131 Connector M8, 4-pin WL8G-P2231 Cable, 3-wire WL8G-N1131 Connector M8, 4-pin WL8G-N2231	WL8G-P1131	6033184
$0.01 m - 2 m^{1}$	PNP		6033188	
0.01 m 3 m ²	NDN		WL8G-N1131	6033183
	NPN		WL8G-N2231	6033187

¹⁾ PL80A.

- · PinPoint LED for a bright, precise light spot
- Durable metal threaded inserts
- SICK ASIC technology the result of decades of experience in photoelectric sensors

Your benefits

- Easy alignment and precise object de-٠ tection due to a highly visible PinPoint LED
- Quick and easy mounting and high durability due to threaded metal inserts

www.mysick.com/en/GL6G

SICK ASIC technology provides high performance, excellent reliability and crosstalk immunity

- · Large, user-friendly potentiometer
- · Large, bright indicator LEDs
- Adjustable receiver sensitivity via 270° turn potentiometer
- IP 67 enclosure rating
- · Easy to adjust due to large, userfriendly potentiometers
- · Easy to monitor due to large, bright indicator LEDs
- Easy installation with SICK accessories
- Detection of transparent objects

Ordering information

- Detection principle: Standard optics
- Sensing range max.: ≤ 7.2 m (PL80A.) •
- Switching mode: Light/dark-switching •
- Adjustment: Potentiometer, 270° •

Output function	Connection	Model name	Part no.
PNP	Ochle 2 wire	GL6G-P1211	1059924
	Cable, 3-wire	GL6G-P1212	1060812
	Connector MQ 4 nin	GL6G-P4211	1059632
	Connector M8, 4-pin	GL6G-P4212	1060810
	Ochle Quine	GL6G-N1211	1059925
NDN	Cable, 3-wire	GL6G-N1212	1060811
NPN		GL6G-N4211	1059633
	Connector M8, 4-pin	GL6G-N4212	1060809

Other models available at www.mysick.com/en/GL6G

GL6G

Ordering information

Other models available at www.mysick.com/en/W27-3_Reflex_Array

- Switching output: PNP
- Switching mode: Light/dark-switching
- Adjustment: Adjustable manual, via teach-in button

Sensor principle	Sensing range max.	Detection height	Min. object size	Connection	Туре	Part no.
Reflex Array Sensor	0 m 4.5 m ¹⁾ 0 2 m ²⁾	50 mm	12 mm	Cable with plug, M12, 4-pin	WL27-3P3402S13	1046538

¹⁾ PL80A.

²⁾ PL40A.

- Low-cost cylindrical M18 sensor with extra short housing
- Potentiometer for adjustment of switching threshold
- Five different housing styles
- Variety of plastic and metal housing styles, with straight or right angle optics

Your benefits

- Space-saving solution due to short housing
- Flexible mounting options due to versatile housing styles
- Potentiometer for adjustment of switching threshold allows detection of transparent objects.
- Easy installation and precise detection due to PinPoint LED

www.mysick.com/en/GR18SG

For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

- Bright and highly visible PinPoint LED
- Special flush type, one-piece metal housing
- Highly visible signal indicator LED
- IP 67 rating
- Reduced maintenance costs due to high tightening torque of single piece flush metal housing
- Rugged and reliable with proven SICK technology
- Highly visible signal indicator LED saves maintenance and commissioning time

Ordering information

Other models available at www.mysick.com/en/GR18SG $% \label{eq:general}$

- Detection principle: Standard optics
- Sensing range max.: 0.03 m ... 7.2 m (PL80A.)
- Switching output: PNP
- Switching mode: Dark-switching
- Adjustment: Potentiometer, 270°
- Connection: Connector M12, 3-pin

Housing material	Housing design	Model name	Part no.
Metal	Axial	GRL18SG-F2331	1059555
	Axial, fully flush	GRL18SG-F233Y	1059556
	Radial, fully flush	GRL18SG-F233W	1059557
Plastic	Axial	GRL18SG-F2336	1059553
	Radial	GRL18SG-F2338	1059554

- Shortest M18 housing on the market
- Flush mounting due to innovative mounting accessories
- Straight or right-angle housings available

Your benefits

- Shortest M18 body on the market, saving installation space
- Flush mounting via snap ring reduces setup time and prevents obstructions to material flow on conveyor systems
- Reliable detection due to Best-inclass background suppression that ignores stray background reflections, detects multi-colored/shiny objects and provides high immunity to ambient light

- Best-in-class background suppression and red PinPoint LED
- High immunity to ambient light
- IP 69K-tested housing offers a long service life that withstands harsh environments
- Choice of straight or right-angle housing designs simplify machine integration
- IP 69K tested housing offers a long service life that withstands harsh environments, reducing maintenance time and costs
- Customer-specific options reduce material and labor costs
- MH15 is compatible with competitor sensors for easy replacement that saves installation time and costs

www.mysick.com/en/MH15

For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

Ordering information

• Detection principle: Standard optics

Other models available at www.mysick.com/en/MH15

	Switching output	Switching mode	Connection	Model name	Part no.
0.035 m 1.9 m ¹⁾	PNP	Light switching	Connector M12, 3-pin	MHL15-P3329S06	1042806
	NDN	Dark awitabing	Connector M12, 3-pin	MHL15-N3229S05	1041308
	INPIN	Dark-Switching	Cable, 3-wire	MHL15-N2229S04	1041175

¹⁾ P250.

- Selectable response time up to 16 µs •
- Sensing range up to 20 m, sensing • distance up to 1400 mm
- Bus-compatible with anti-interference
- 2 x 4-digit display •

Your benefits

- Reliable, rapid process detection, • even under the most difficult ambient conditions, such as dust, spray or mist
- Easy commissioning and product ٠ changeover due to external teach-in
- Cross-talk is eliminated when utilizing • bus configuration option
- Quick, easy setup and adjustment ٠ due to an intuitive operating menu

- Adjustable hysteresis
- · Rotatable display screen
- High-resolution signal processing
- · Programmable time delays
- Flexible parameter adjustment due to high-resolution signal processing. Hysteresis and time delays can be adapted to suit the application, e.g., when detecting tiny or transparent objects
- Easy-to-read display, even under ٠ difficult installation conditions

Ordering information

www.mysick.com/en/WLL180T

For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

Other models available at www.mysick.com/en/WLL180T

• Adjustment: Teach-in button, cable, +/- increment button, manual

Device type	Type of light	Sensing range max.	Switching output	Connection	Model name	Part no.
Ctand along	tand-alone Infrared light 0 mm 1,000 mm, through-beam system ^{1) 2}	0 mm 1,000 mm,	PNP	Connector, M8, 4-pin	WLL180T-P474	6039618
Stand-alone		through-beam system $^{\rm 1)\ 2)}$	NPN	Connector, M8, 4-pin	WLL180T-N474	6039619
Base unit ³⁾	Visible red light	0 m 20 m, through- beam system ^{1) 4)}	PNP	Connector, M8, 3-pin	WLL180T-M333	6042428

¹⁾ Sensing range with 8 ms response time. Scanning range reduction with shorter response time (see tables LL3/WLL180T).

²⁾ LL3-TW01.

³⁾ Up to 15 expansion units can be connected.

4) LL3-TX01.

- Large range of reflectors of various sizes, shapes, and mounting methods
- Chemically resistant reflectors are unaffected by aggressive cleaning agents

Your benefits

- SICK has the right reflector for every application
- The CHEM reflectors suffer no damage from aggressive cleaning agents

- Reflectors with special antifog coating prevent water condensation
- Reflectors for use in high or low temperatures
- Can be used in damp or humid environments, or with rapid temperature fluctuations, without reflector fogging
- Customized reflector solutions are
 possible for specialized requirements

Other models available at www.sick.com/reflectors

www.sick.com/reflectors

For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

Ordering information

Description Mounting system type Material Dimensions Model name Part no. 56 mm x 28 mm PL30A 1002314 37 mm x 56 mm PL40A 1012720 Screw-on. PMMA/ABS Angular 2 hole mounting 47 mm x 47 mm P250 5304812 1003865 80 mm x 80 mm PL80A None / clampable 45 mm x 17 mm PL15F 5313849 Self-adhesive 27 mm x 17 mm PL18F 5319994 PMMA/ABS 18 mm x 18 mm PL10F 5311210 Fine triple reflectors 38 mm x 16 mm 5308844 PL20F Screw-on, 2 hole mounting 47 mm x 47 mm P250F 5308843 18 mm x 18 mm PL10F CHEM 5321636 Plastic 38 mm x 15 mm PL20 CHEM 5321089 Plastic 47 mm x 47 mm P250 CHEM 5321097 Screw-on, PMMA/ABS 56 mm x 37 mm PL40A Antifog 5322011 Special reflectors 2 hole mounting **HOT** Thermoplast 47 mm x 47 mm P250H 5315124 PMMA/ABS PL50HS 1009871

SICK at a glance

Leading technologies

With a staff of more than 5,000 and over 50 subsidiaries and representations worldwide, SICK is one of the leading and most successful manufacturers of sensor technology. The power of innovation and solution competency have made SICK the global market leader. No matter what the project and industry may be, talking with an expert from SICK will provide you with an ideal basis for your plans – there is no need to settle for anything less than the best.

Unique product range

- Non-contact detecting, counting, classifying, positioning and measuring of any type of object or media
- Accident and operator protection with sensors, safety software and services
- Automatic identification with bar code and RFID readers
- Laser measurement technology for detecting the volume, position and contour of people and objects
- Complete system solutions for analysis and flow measurement of gases and liquids

Comprehensive services

- SICK LifeTime Services for safety and productivity
- Application centers in Europe, Asia and North America for the development of system solutions under realworld conditions
- E-Business Partner Portal www.mysick.com – price and availability of products, requests for quotation and online orders

Worldwide presence with subsidiaries in the following countries:

Australia Belgium/Luxembourg Brasil Ceská Republika Canada China Danmark Deutschland España France Great Britain India Israel Italia Japan

México Nederland Norge Österreich Polska România Russia Schweiz Singapore Slovenija South Africa South Korea Suomi Sverige Taiwan Türkiye **United Arab Emirates** USA

Please find detailed addresses and additional representatives and agencies in all major industrial nations at www.sick.com

