3/2	Introduction
	3RT, 3TB, 3TF Contactors for Switching Motors
3/5	General data
3/11	3RT10 contactors, 3-pole, 3 ... 250 kW
3/55	3RT12 vacuum contactors, 3 -pole, 110 ... 250 kW
3/64	3TF6 vacuum contactors, 3-pole, 335 ... 450 kW
3/71	3TB5 contactors with DC solenoid system, 3-pole, 55 ... 200 kW
3/76	3TF2 contactors, 3-pole, 2.2 ... 4 kW
	3RA13, 3RA14 Contactor Assemblies
	3RA13 Reversing Contactor Assemblies
3/84	3RA13 complete units, 3 ... 45 kW 3RA14 Contactor Assemblies for
	Wye-Delta Starting
3/86	3RA14 complete units, 3 ... 75 kW
	3TD, 3TE Contactor Assemblies
3/90	3TD6 reversing contactor assemblies, 335 kW
3/91	3TE6 contactor assemblies for wye-delta starting, 630 kW
	3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications
	3RT14 Contactors for Switching Resistive Loads (AC-1)
3/93	3-pole, $140 \ldots 690$ A 3RT13 Contactors for Switching Resistive Loads (AC-1)
3/102	4-pole, 4 NO, 18 ... 140 A 3TK1 Contactors for Switching Resistive Loads (AC-1)
3/106	$\text { 4-pole, } 4 \text { NO, } 200 \ldots 1000 \mathrm{~A}$ 3TK20 Contactors
3/109	4-pole, 4 kW 3RT15 Contactors
3/116	4-pole, 2 NO + 2 NC, $4 \ldots 18.5 \mathrm{~kW}$ 3RT16 Capacitor Contactors
3/118	12.5 ... 50 kvar Contactors with Extended Operating Range $0.7 \ldots 1.25 \times U_{s}$, for Railway Applications
3/120	3RH11 contactor relays
3/121	3TH4 contactor relays
3/122	3RT10 motor contactors, 5.5 ... 45 kW
3/124	3TB5 motor contactors, $55 . .200 \mathrm{~kW}$
3/125	3TC contactors for switching DC voltage, 2-pole
	3TC Contactors for Switching DC Voltage
3/126	1- and 2-pole, 32 ... 400 A

3RH, 3TH Contactor Relays

3/130
3/136
3/137
3/141
3/145
8-pole
3RH11 coupling relays for switching auxiliary circuits, 4-pole

	3RT Coupling Relays
3/146	3RT10 coupling relays (interface), 3-pole, 3 ... 11 kW
	3TX7, 3RS18 Coupling Relays
	3TX7 Coupling Relays,
$3 / 148$	Narrow Design Relay couplers
$3 / 152$	Relay couplers with plug-in design
$3 / 153$	Semiconductor couplers
	3RS18 Coupling Relays with Industrial
3/157	Housing Relay couplers

Coupling Relays with

 LZS/LZX Plug-In RelaysPlug-in relay couplers

3TG10 Power Relays/Miniature

 Contactors4-pole, 4 kW

Accessories and Spare Parts

For 3RT, 3RH Contactors and Contactor Relays
Accessories for 3RT, 3RH contactors and contactor relays
For 3T Contactors and Contactor Relays
Accessories for 3TB, 3TC, 3TF,
3TG, 3TK contactors
Accessories for 3TH contactor relays

Project Planning Aids

3/178
3/179
3/221

Accessories and Spare Parts	
	For 3RT, 3RH Contactors and
$3 / 167$	Contactor Relays Accessories for 3RT, 3RH contactors and contactor relays
	For 3T Contactors and Contactor
Relays	
3/176	Accessories for 3TB, 3TC, 3TF, 3TG, 3TK contactors Accessories for 3TH contactor relays

- Overview
- Dimensional drawings
- Schematics

Controls - Contactors and Contactor Assemblies

Introduction

Overview

3RT14 AC-1 contactors

Type	--	--	--
$1 \mathrm{e} / \mathrm{AC}-1 / 40{ }^{\circ} \mathrm{C} / \leq 690 \mathrm{~V} \quad \mathrm{~A}$	--	--	--
Accessories for contactors			
Auxiliary switch blocks front lateral	$\text { 3RH19 } 11$	$\begin{aligned} & \text { 3RH19 } 21 \\ & \text { 3RH19 } 21 \end{aligned}$	
Terminal covers	--	--	3RT19 36-4EA2
Box terminal blocks	--	--	--
Surge suppressors	3RT19 16	3RT19 26	3RT19 26/36

3RU11 and 3RB20/21 overload relays (protection equipment: overload relays)

3RU11, thermal, CLASS 10	3RU11 16	0.1... 12 A		3RU11 26	1.8... 25			3RU11 36 5.5... 50 A		
3RB20/21, solid-state, CLASS 5, 10, 20 and 30	$\begin{array}{\|l\|} \hline \text { 3RB20 } 16 \\ \text { 3RB21 } 16 \end{array}$	$0.1 \ldots 12 \mathrm{~A}$		$\begin{array}{\|l\|} \hline \text { 3RB20 } 26 \\ \text { 3RB21 } 26 \end{array}$	$3 \ldots 25 \mathrm{~A}$			$\begin{aligned} & \hline \text { 3RB20 36 } \\ & \text { 3RB21 36 } \end{aligned}$	$6 \ldots 50 \mathrm{~A}$	
3RB22/23, solid-state, CLASS 5, 10, 20 and 30	$\begin{array}{r} \text { 3RB2. } 83+\mathbf{3 R B 2 9 ~ 0 6} \\ 0.3 \ldots 25 \mathrm{~A} \end{array}$							$\begin{array}{\|r\|} \hline \text { 3RB2. } 83+3 R B 2906 \\ 10 \ldots 100 \mathrm{~A} \\ \hline \end{array}$		
3RV10 motor starter protectors (protection equipment: motor starter protectors)										
Type	3RV10 11 0.18 ... 12 A			3RV10 $219 \ldots 25 \mathrm{~A}$				3RV10 $3122 . . .50 \mathrm{~A}$		
Link modules	3RA19 11			3RA19 21				3RA19 31		
3RA13 reversing contactor assemblies										
Complete units Type	3RA13 15	3RA13 16	3RA13 17		3RA13 24	3RA13 25	3RA13 26	3RA13 34	3RA13 35	3RA13 36
400 V kW	3	4	5.5		5.5	7.5	11	15	18.5	22
Assembly kits/wiring modules	3RA19 13-2A			3RA19 23-2A				3RA19 33-2A		
Mechanical interlocks	3RA19 12-2H			3RA19 24-1A/-2B						

3RA14 contactor assemblies for wye-delta starting

Complete units	Type	3RA14 15	3RA14 16	3RA14 23	3RA14 25	3RA14 34	3RA14 35	3RA14 36
400 V	kW	5.5	7.5	11	15/18.5	22/30	37	45
		3RA19 13-2B		3RA19 23-2B		3RA19 33-2B/-2C		

[^0]
Controls - Contactors and Contactor Assemblies

Introduction

				3TY7 561
3RT19 46-4EA1/2	3RT19 56-4EA1/2/3	3RT19 66-4EA1/2/3		3TX7 686/696
--	3RT19 55/56-4G	3RT19 66-4G		--
	3RT19 56-1C (RC element)			3TX7 572
3RU11 46 18... 100 A	--	--	--	--
$\begin{array}{\|ll\|} \hline \text { 3RB20 } 46 & 12.5 \ldots 100 \mathrm{~A} \\ \text { 3RB21 } 46 & \\ \hline \end{array}$	$\begin{aligned} & \text { 3RB20 } 5650 \ldots 200 \mathrm{~A} \\ & \text { 3RB21 } 56 \end{aligned}$	$\begin{array}{\|l} \hline \text { 3RB20 } 6655 \ldots 630 \mathrm{~A} \\ \text { 3RB21 } 66 \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline \text { 3RB20 } 66 & 160 \ldots 630 \mathrm{~A} \\ \text { 3RB21 } 66 \end{array}$	$\begin{aligned} & \hline \text { 3RB20 } 66 \\ & \text { 3RB21 } 66 \end{aligned}$
	3RB2. 83 + 3RB29 56 20 ... 200 A	$\text { 3RB2. } 83 \text { + 3RB29 } 66$		
3RV10 41 45 ... 100 A	--	--	--	--
3RA19 41	--	--	--	--
3RA13 44 3RA13 45 3RA13 46	--	--	--	3TD68 04
$\begin{array}{lll}30 & 37\end{array}$	$55 \quad 75$	110132160	200250	335
3RA19 43-2A	3RA19 53-2A	3RA19 63-2A	3RA19 73-2A	3TX7 680-1A
	3RA19 54-2A			3TX7 686-1A
3RA14 44 3RA14 45	--	--	--	3TE68 04
$55 \quad 75$	--	--	--	630
3RA19 43-2B/-2C	3RA19 53-2B	3RA19 63-2B	3RA19 73-2B	3TX7 680-1B

Introduction

The advantages at a glance		

Connection method

The contactors and relays are available with screw terminals (box terminals and connecting bars) or with Cage Clamp terminals or spring-type terminals. Some device types are also available with plug-type connectors.

[^1]
Overview

3RT1 contactors and coupling relays
Size S00 with mountable accessories
The SIRIUS generation of controls is a complete, modular system family, logically designed right down to the last detail, from the basic units to the accessories.

(1) Contactor
(2) Coupling relay
(3) Solid-state timing relay block, with ON-delay
(4) Solid-state timing relay block, with OFF-delay
(5) Auxiliary switch block with solid-state time delay (ON or OFF-delay or wye-delta function)
(6) 1-pole auxiliary switch block, cable entry from above
(7) 2-pole auxiliary switch block, cable entry from above
(8) 1-pole auxiliary switch block, cable entry from below
(9) 2-pole auxiliary switch block, cable entry from below
(10) 4-pole auxiliary switch block (terminal designations according to EN 50012 or EN 50005)
(11) 2-pole auxiliary switch block, standard version or solid-state compatible version (terminal designations according to EN 50005)
(12) Solder pin adapter for contactors with 4-pole auxiliary switch block
(13) Solder pin adapter for contactors and coupling relays
(14) Additional load module for increasing the permissible residual current
(15) Surge suppressor with LED
(16) Surge suppressor without LED
(17) 3-phase feeder terminal
(18) Link for paralleling (star jumper), 3-pole, without connection terminal
(19) Link for paralleling, 3-pole, with terminal
(20) Link for paralleling, 4-pole, with terminal
(21) Connection module (adapter and connector) for contactors with screw-type connection
\bigcirc
For contactors
For contactors and coupling relays (interface)

For contactor assemblies see pages 3/84 to 3/85.
For assembly kit for reversing contactor assemblies (mech. interlocking, wiring modules) see Catalog LV 1. For mountable overload relays see "Protection Equipment --> Overload Relays".

General data

3RT1 contactors

Sizes S0 to S3 with mountable accessories

3RT1 contactors
Sizes S6 to S12 with accessories
(illustration for basic unit)

(1) 3RT10 and 3RT14 air-break contactor, sizes S6, S10 and S12
(2) Auxiliary switch block with solid-state time delay (ON or OFF-delay or wye-delta function)
(3) 4-pole auxiliary switch block
(terminal designations according to EN 50012 or EN 50005)
(4) 2-pole auxiliary switch block, cable entry from above
(5) 2-pole auxiliary switch block, cable entry from below
(6) Single-pole auxiliary switch block (up to 4 can be snapped on)
(7) 2-pole auxiliary switch block, laterally mountable left or right (terminal designations according to EN 50012 or EN 50005) (identical for S0 to S12)
(8) Surge suppressor (RC element), for plugging into top of withdrawable coil
(9) Terminal cover for cable lug and busbar connection, different for sizes S6 and S10/S12
(10) Terminal cover for box terminal, different for sizes S6 and S10/S12
(11) Box terminal block, different for sizes S 6 and $\mathrm{S} 10 / \mathrm{S} 12$
Accessories identical for sizes S 0 to S 12
Accessories identical for sizes S6 to S12
Accessories differ according to size

For mountable overload relays see "Protection Equipment -->
Overload Relays".

3RA1 contactor assemblies, 3RT1 contactors
Size S6 with accessories

(1) 3RT10 and 3RT14 air-break contactor, size S6
(2) 3RA19 54-2A mechanical interlock, laterally mountable
(3) 3RA19 53-2A wiring modules on the top and bottom
(4) 3RT19 56-4BA31 link for paralleling (star jumper), 3-pole, with through hole
(5) Terminal cover for cable lug and busbar connection, different for sizes S6 and S10/S12
(6) Terminal cover for box terminal, different for sizes S6 and S10/S12Accessories identical for sizes S6 to S12
(7) Box terminal block, different for sizes S 6 and $\mathrm{S} 10 / \mathrm{S} 12$Accessories differ according to size

For mountable overload relays see "Protection Equipment -->
Overload Relays"

3RA1 contactor assemblies, 3RT1 contactors
Sizes S10 and S12 with accessories

(1) 3RT10 and 3RT14 air-break contactor, sizes S6, S10 and S12 or 3RT12 vacuum contactor, sizes S10 and S12
(2) Mechanical interlock, laterally mountable
(3) 3RA19 wiring modules on the top and bottom
(4) 3RT19 56-4BA31 link for paralleling (star jumper), 3-pole, with through hole
(5) Terminal cover for box terminal, different for sizes S6 and S10/S12
(6) Terminal cover for cable lug and busbar connection, different for sizes S6 and S10/S12Accessories identical for sizes S6 to S12Accessories differ according to size
}

For mountable overload relays see "Protection Equipment -->
Overload Relays".

General data

3RT1 contactors
Sizes S6 to S12 with accessories
 and 3RT12 vacuum contactors)
(size S12: the same for air-break and vacuum contactors)
(5) Withdrawable coils and laterally mountable module (plug-on) for air-break contactors with solid-state operating mechanism and remaining lifetime indicator 3RT1...-.P.. and 3RT1. ..-. Q..
(6) Surge suppressor (RC element), plug-mountable on withdrawable coils

- With conventional operating mechanism 3RT1...-. A..
- With solid-state operating mechanism 3RT1...-.N.Identical for sizes S6 to S12
Different according to size

For mountable overload relays see "Protection Equipment -->
Overload Relays".

Overview

3RT10 contactors, 3-pole, sizes S00 to S3, up to 45 kW
AC and DC operation
IEC 60947, EN 60947 (VDE 0660)
The 3RT1 contactors are climate-proof. They are finger-safe according to EN 50274.
Size SOO contactors have an auxiliary contact integrated in the basic unit. The basic units of sizes S0 to S3 contain only the main current paths.
All basic units can be extended with auxiliary switch blocks. For size SO and higher, complete units with 2 NO +2 NC are available (connection designation according to EN 50012). The auxiliary switch block can be removed (for more information see Integration).
In addition, complete units with permanently mounted auxiliary switch block (2 NO +2 NC according to EN 50012) are offered for sizes SOO and SO. These versions are built according to special Swiss regulations "SUVA" and are distinguished externally by a red labeling plate.

Connection method

The 3RT1 contactors are available with screw terminals (box terminals and connecting bars) or with Cage Clamp terminals.
The size S3 contactors have removable box terminals for the main conductor connections. This permits connection of ring terminal lugs or busbars.

Contact reliability

If voltages $\leq 110 \mathrm{~V}$ and current $\leq 100 \mathrm{~mA}$ are to be switched, the auxiliary contacts of the 3RT1 contactor or 3RH11 contactor relay should be used as they guarantee a high level of contact reliability.
These auxiliary contacts are suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of 17 V .
Short-circuit protection of the contactors
Short-circuit protection of the contactors without overload relay, see "Technical specifications". For short-circuit protection of the contactors with overload relay, see "Overload Relays". To assemble fuseless motor feeders you must select combinations of motor starter protector and contactor as explained in "Fuseless Load Feeders".

Motor protection

3RU11 thermal overload relays or 3RB20 solid-state overload relays can be fitted to the 3RT1 contactors for protection against overload. The overload relays must be ordered separately.

Ratings of induction motors

The quoted rating (in kW) refers to the output power on the motor shaft (according to the nameplate).

Surge suppression

3RT1 contactors can be retrofitted with RC elements, varistors, diodes or diode assemblies (assembly of diode and Zener diode for short break times) for damping opening surges in the coil.
The surge suppressors are plugged onto the front of size SOO contactors. Space is provided for them next to a snap-on auxiliary switch block.
For size S0 to S3 contactors, varistors and RC elements can be snapped on either on the top or directly below the coil terminals. Diode assemblies are available in 2 different versions on account of their polarity. Depending on the application they can be connected either only at the bottom (assembly with motor starter protector) or only at the top (assembly with overload relay).

The plug-in direction of the diodes and diode assemblies is specified by coding.

Exceptions:

3RT19 26-1T. 00 and
3RT19 36-1T.00, in this case the plug-in direction is marked with "+" and "-".
Coupling relays are supplied either without overvoltage damping or with a varistor or diode connected as standard, according to the version.

Note:

The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are damped against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

3RT10 contactors, 3-pole, sizes S6 to S12,
> 45 to 250 kW

- 3RT10, contactors for switching motors,
- 3RT12, vacuum contactors for switching motors,
- 3RT14, contactors for AC-1 applications.

Operating mechanism types

Two types of solenoid operation are available:

- Conventional operating mechanism
- Solid-state operating mechanism (with 3 performance levels)

UC operation

The contactors can be operated with AC (40 to 60 Hz) as well as with DC.

Withdrawable coils

For simple coil replacement, e. g.. if the application is replaced, the magnetic coil can be pulled out upwards after the release mechanism has been actuated and can be replaced by any other coil of the same size.

Auxiliary contact complement

For details of the auxiliary switch fittings per S0-S12 contactor see page $3 / 16$.

- 3RT10 and 3RT14 contactors:

Auxiliary contacts mounted laterally and on front

- 3RT12 vacuum contactors:

Auxiliary contacts mounted laterally

Note:

$\overline{\text { Auxiliary contact complement according to SUVA. }}$
Contactors with permanently mounted auxiliary switch block for safety applications according to SUVA.

Contactors with conventional operating mechanism

Version 3RT1. ..-.A:

The magnetic coil is switched directly on and off with the control supply voltage U_{S} by way of terminals A1/A2.
Multi-voltage range for the control supply voltage U_{s} :
Several closely adjacent control supply voltages, available around the world, are covered by just one coil, for example 110-115-120-127 V UC or 220-230-240 V UC.
In addition, allowance is also made for a coil operating range of 0.8 times the lower ($U_{\mathrm{s} \text { min }}$) and 1.1 times the upper (U_{s} max) rated control supply voltage within which the contactor switches reliably and no thermal overloading occurs.

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactors with solid-state operating mechanism

The magnetic coil is supplied selectively with the power required for reliable switching and holding by upstream control electronics.

- Wide voltage range for the control supply voltage U_{s} : Compared with the conventional operating mechanism, the solid-state operating mechanism covers an even broader range of control supply voltages used worldwide within one coil variant. For example, the coil for 200 to 277 V UC ($U_{\text {s min }}$ to U_{s} max $)$ covers the voltages 200-208-220-230-240-254-277 V used worldwide.
- Extended operating range 0.7 to $1.25 \times \mathrm{U}_{\mathrm{s}}$:

Indication of remaining lifetime (RLT)

Main contactor contacts are working parts which must be replaced in good time when the end of their service life has been reached. The degree of contact erosion and thus the electrical endurance (= number of operating cycles) depends on the loading, utilization category, operating mode, etc. Up to now, routine checks/visual inspections by the maintenance personnel were needed in order to gain an insight into the state of the main contacts. The remaining lifetime indication function now takes over this task. It does not count the number of operating cycles which does not provide information about contact erosion - but instead electronically identifies, evaluates and stores the actual progress of erosion of each one of the three main contacts, and outputs a warning when specified limits are reached. The stored data are not lost even if the control supply voltage for A1/A2 fails. After replacement of the main contacts, measurement the remaining lifetime must be reset using the "RESET" button (hold down RESET button for about 2 seconds using a pen or similar tool).

Advantages:

- Signaling through relay contact or AS-i when remaining lifetime is 20%, i. e. contact material wear is 80%
- Additional visual indication of various levels of erosion by means of LEDs on the laterally mounted solid-state module when remaining lifetime is 60% (green), 40% (orange) and 20 \% (red)

- Early warning to replace contacts
- Optimum utilization of contact material
- Visual inspection of the condition of contacts no longer necessary
- Reduction of ongoing operating costs
- Optimum planning of maintenance measures
- Avoidance of unforeseen plant downtimes

3RT1. ..-.N version: for 24 V DC PLC output

2 control options:

- Control without a coupling link directly through a 24 V DC/ $\geq 30 \mathrm{~mA}$ PLC output (EN 61131-2). Connection by means of 2-pole plug-in connection. The screwless springtype connection is part of the scope of supply. The control supply voltage which supplies the solenoid operating mechanism must be connected to A1/A2.

Before start-up, the slide switch for PLC operation must be moved to the "PLC ON" position (setting ex works: "PLC OFF").

(1) Slide switch must be in "PLC ON" position
(2) Plug-in connection, 2-pole
(3) Emergency shutdown - optional

-

optiona

Conventional control by applying the control supply voltage at A1/A2 through a switching contact.

Note:

The slide switch must be in the "PLC OFF" position
(= setting ex works).

3RT10 contactors, 3-pole, 3 ... 250 kW

3RT1. ..-. P version: For 24 V DC PLC output or PLC relay output, with remaining lifetime indicator (RLT).

To supply the solenoid and the remaining lifetime indicator with power, the control supply voltage U_{s} must be connected to terminals A1/A2 of the laterally mounted solid-state module. The control inputs of the contactor are connected to a 7 -pole plug-in connection; the screwless spring-type connection is part of the scope of supply

- The "Remaining Lifetime RLT" status signal is available at terminals R1/R2 through a floating relay contact (hard goldplated, enclosed) and can be input to SIMOCODE, PLC or other devices for processing, for example.
Permissible current-carrying capacity of the R1/R2 relay output:

- $I_{\mathrm{e}} / \mathrm{AC}-15 / 24$ to $230 \mathrm{~V}: 3 \mathrm{~A}$
 - $I_{\mathrm{e}} / \mathrm{DC}-13 / 24 \mathrm{~V}: 1 \mathrm{~A}$

- LED indications

The following states are indicated by means of LEDs on the laterally mounted solid-state module:

- Contactor ON (energized state): green LED ("ON")
- Indication of remaining lifetime

2 control options:

- Contactor control without a coupling link directly through a 24 V DC/ $\geq 30 \mathrm{~mA}$ PLC output (EN 61131-2) by way of terminals IN+/IN-.

> (1) Solid-state module of 3RT1. ..-.P contactor
> (2) Plug-in connection, 7-pole

> S1 Selector switch for switching from automatic control through PLC semiconductor output to local control
> S2 Local control option
> (3) Emergency shutdown - optional

Possibility of switching from automatic control to local control by way of terminals $\mathrm{H} 1 / \mathrm{H} 2$, i. e. automatic control through PLC or SIMOCODE/PROFIBUS DP can be deactivated e. g. at start-up or in the event of a fault and the contactor can be controlled manually.

- Contactor control through relay outputs, e. g. by
- PLC
- SIMOCODE
by way of terminals $\mathrm{H} 1 / \mathrm{H} 2$. Contact loading: $U_{\mathrm{s}} /$ approx. 5 mA . When operated through SIMOCODE, a communication link to PROFIBUS DP is also provided

3RT1. ..-. Q version: Communication-capable with integrated AS-Interface and remaining lifetime indicator (RLT)

To supply the solenoid and the remaining lifetime indicator with power, the control supply voltage U_{S} must be connected to terminals A1/A2 of the laterally mounted solid-state module. The contactor itself is controlled by way of the integrated AS-Interface interface. The inputs and outputs are connected to a 10-pole plug-in connection; the screwless spring-type connections (6-pole for external connection and 4-pole for AS-Interface connection) are part of the scope of supply.

- LED indications

The following states are indicated by means of LEDs on the laterally mounted solid-state module:

- Contactor ON (energized state): green LED ("ON")
- Automatic/Local control: green LED ("AUTO")
- Bus status: green/red dual LED ("AS-i")
- Remaining lifetime indicator (RLT)
- AS-Interface addressing socket "ADDR":

The contactor address can be assigned after installation.

3RT10 contactors, 3 -pole, 3 ... 250 kW

Control circuit:

- Contactor control through AS-Interface by way of terminals AS-i +/AS-i -. Each of these terminals is jumpered and connected twice to a 4-pole connector which is separate from the other control inputs.
Advantages:
- The AS-Interface cable is not interrupted if the connector is pulled out
- The contactor remains functional through the local control inputs and its own 6-pole connector
- Control signals through AS-i:
- Contactor ON/OFF
- Status signals through AS-i:
- Contactor ON/OFF
- Automatic/local control
- Remaining lifetime indicator (RLT)
- Signal through free input, e. g. overload relay tripped.

Possibility of switching from automatic control to local control by means of terminals $\mathrm{H} 1 / \mathrm{H} 2 / \mathrm{H} 3$, i. e. automatic control through AS-Interface can be deactivated e. g. during startup or in the event of a fault and the contactor can be controlled manually.

Contactor diagnostics using the user program

- Inputs

Input signals		Device status	
DIO	"Ready"	0	Device not ready/manual operation
		1	Device ready/automatic mode
DI1	"Running"	0	Contactor off
		1	Contactor on
DI2	"Remaining lifetime"	0	Remaining lifetime RLT > 20 \%
		1	Remaining lifetime RLT ≤ 20 \%
DI3	"Free input"	0	No input signal at SF1/2
		1	Input signal at SF1/2

- Outputs

Output signals		Device status
DO0 "Running"	0	Contactor off
	1	Contactor on
DO1	0	--
	1	--
DO2	0	--
DO3	$\frac{1}{2}$	--
	1	--

Integration

Auxiliary switch blocks

Various auxiliary switch blocks can be added to the 3RT1 basic units depending on the application:

Size S00

3RT10 1. contactors

Terminal designations according to EN 50012 or EN 50005.

Size SOO contactors have an auxiliary contact integrated in the basic unit.

Contactors with a NO contact as auxiliary contact with screw or Cage Clamp terminals, identification number 10E, can be expanded into contactors with 2, 4 and 5 auxiliary contacts according to EN 50012 using auxiliary switch blocks. The identification numbers 11E, 22E, 23E and 32E on the auxiliary switch blocks apply to the complete contactors. These auxiliary switch blocks cannot be combined with contactors which have a NC contact in the basic unit (identification number 01) as they are coded.

All contactors of size SOO with one auxiliary contact (identification numbers 10E or 01) and the contactors with 4 main contacts can be expanded into contactors with 3 or 5 auxiliary contacts using auxiliary switch blocks with the identification numbers 40 to 02 (in the case of contactors with 4 main contacts: 2 or 4 auxiliary contacts) according to EN 50005.
The identification numbers on the auxiliary switch blocks apply only to the attached auxiliary switches.
Single- or two-pole auxiliary switch blocks with connection options from above or below enable easy and clearly arranged wiring especially for the installation of network access junctions. These auxiliary switch blocks are offered only with screw terminals.

The solid-state compatible 3RH19 11-1NF.. auxiliary switch blocks for contactors of size SOO include 2 enclosed contacts. They are suitable in particular for switching small voltages and currents (hard gold-plated contacts) and for operation in dusty atmospheres. The NC auxiliary contacts are not mirror contacts.
All the previously mentioned auxiliary switch variants can be snap-fitted onto the front of the contactor. The auxiliary switch block has a centrally positioned release lever for disassembly.

Sizes S0 to S3

3RT10 2. to 3RT10 4. contactors, 1-pole auxiliary switch blocks,
terminal designations according to EN 50005 or EN 50012.

3RT10 contactors, 3 -pole, 3 ... 250 kW

3RT10 2. to 3RT10 4. contactors, 4-pole auxiliary switch blocks, terminal designations according to EN 50005 or EN 50012

A diverse range of auxiliary switch blocks is available for various applications. The contactors themselves have no integrated conducting path.

The auxiliary switch variants are uniform for the contactors

 of size S0 to S12.One 4-pole or up to four single-pole auxiliary switch blocks (screw or Cage Clamp terminals) can be snapped on. When the contactors are switched on, the NC contacts are opened first and then the NO contacts are closed

The terminal designations of the single-pole auxiliary switch locks are comprised of identification numbers (location identifiers) on the basic unit and of function numbers on the auxiliary switch blocks.

Also available are 2-pole auxiliary switch blocks (screw terminals) for cable entry from above or below in the design of a quad block (feeder auxiliary switch).

If the installation space is limited in depth, 2-pole auxiliary switch blocks (screw or Cage Clamp terminals) can be attached laterally for use on the left or on the right.

The auxiliary switch blocks attached to the front can be disassembled with the help of a centrally arranged release lever; the laterally attached auxiliary switch blocks are easy to remove by pressing on the checkered surfaces.
The terminal designation of the individual auxiliary switch blocks corresponds to EN 50005 or EN 50012, that of the complete contactor with auxiliary switch block 2 NO +2 NC corresponds to EN 50012.

The laterally attachable auxiliary switch blocks according to EN 50012 can be used only when no 4-pole auxiliary switch blocks are snapped onto the front. If single-pole auxiliary switch blocks are used in addition, the location identifiers on the contactor must be noted.

Two enclosed and 2 standard contacts are available with the 3RH19 21-.FE22 solid-state compatible auxiliary switch block, which can be attached to the front. The 3RH19 21-2DE11 laterally mountable auxiliary switch block contains 2 enclosed contacts ($1 \mathrm{NO}+1 \mathrm{NC}$). The enclosed contacts are suitable in particular for switching small voltages and currents (hard goldplated contacts) and for operation in dusty atmospheres. The NC auxiliary contacts are mirror contacts.

Sizes S0 and S2

A maximum of 4 auxiliary contacts can be attached; the auxiliary switch blocks used can be of any version. For reasons of symmetry, when two 2-pole laterally mountable auxiliary switch blocks are used, one block must be attached on the right and one on the left.

More auxiliary contacts are permissible with size S2 under certain conditions (please ask).
For 4-pole contactors see 3RT13 and 3RT15.

Size S3 to S12

A maximum of 8 auxiliary contacts can be attached; please note the following:

- Of these 8 auxiliary contacts, there must be no more than 4 NC contacts
- Ensure the symmetry of laterally mounted auxiliary switch blocks
For 4-pole contactors see 3RT13 and 3RT15.

Technical specifications

SIRIUS controls are climate-proof and are suitable and tested for use worldwide.
If the devices are used in ambient conditions which deviate from common industrial conditions (EN 60721-3-3 "Stationary Use,

Weather-Protected"), the manufacturer must be consulted about possible restrictions with regard to the reliability and endurance of the device and possible protective measures.

Endurance of the auxiliary contacts

It is assumed that the operating mechanisms are switched randomly, i. e.
not synchronized with the phase angle of the supply system.
The contact endurance is mainly dependent on the breaking current.
The characteristic curves apply to:

- Integrated auxiliary contacts on 3RT10
- Auxiliary switch blocks 3RH19 11, 3RH19 21 for contactors of size S00 to S12

[^2]

Diagram legend:
$I_{a}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current
2) Up to 500 V switching capacity for laterally mountable auxiliary switch blocks.

3RT10 contactors, 3 -pole, 3 ... 250 kW

Endurance of the main contacts

The characteristic curves show the contact endurance of the contactors when switching resistive and inductive AC loads (AC-1/AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i. e. not synchronized with the phase angle of the supply system.

The rated operational current I_{e} complies with utilization category AC-4 (breaking six times the rated operational current) and is intended for a contact endurance of at least 200000 operating cycles.
If a shorter endurance is sufficient, the rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4$ can be increased.
If the contacts are used for mixed operation, i. e. normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact endurance can be calculated approximately from the following equation:

$$
x=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}
$$

Characters in the equation:
X Contact endurance for mixed operation in operating cycles
A Contact endurance for normal operation $\left(I_{\mathrm{a}}=I_{\mathrm{e}}\right)$ in operating cycles
B Contact endurance for inching ($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles
C Inching operations as a percentage of total switching operations

Diagram legend:

$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

Size S00

Operating cycles at

Size So

3RT, 3TB, 3TF Contactors for Switching Motors

Size S2

Sizes S6 to S12

3RT12 vacuum contactors

Sizes S10 and S12

Diagram legend:
$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactors	Type Size		$\begin{aligned} & \text { 3RT10 } 1 . \\ & \text { S00 } \end{aligned}$
Control			
Magnetic coil operating range			
- AC operation		$\begin{aligned} & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{s}} \end{aligned}$
- DC operation		Up to $50^{\circ} \mathrm{C}$ Up to $60^{\circ} \mathrm{C}$	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{s}} \end{aligned}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times U_{s}$)			
AC operation, $50 / 60 \mathrm{~Hz}$			
- Standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 27 / 24.3 \\ & 0.8 / 0.75 \\ & 4.4 / 3.4 \\ & 0.27 / 0.27 \end{aligned}$
- AC operation, 50 Hz , USA/Canada	- Closing - P.f. for closing - Closed - P.f. for closed	VA VA	$\begin{aligned} & 26.4 \\ & 0.81 \\ & 4.7 \\ & 0.26 \end{aligned}$
- AC operation, 60 Hz , USA/Canada	- Closing - P.f. for closing - Closed - P.f. for closed	VA VA	$\begin{aligned} & 31.7 \\ & 0.77 \\ & 5.1 \\ & 0.27 \end{aligned}$
- DC operation	Closing = Closed	W	3.3
Permissible residual current of the electronics (with 0 signal)			
	- AC operation		$<3 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$, the 3RT19 16-1GA00 additional load module is recommended for a higher residual current
	- DC operation		$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$, the 3RT19 16-1GA00 additional load module is recommended for a higher residual current
Operating times ${ }^{1)}$			
Total break time $=$ Opening delay + Arcing time			
- AC operation at $0.8 \ldots 1.1 \times U_{s}$	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 8 \ldots 35 \\ & 4 \ldots 30 \end{aligned}$
- DC operation at $0.85 \ldots 1.1 \times U_{s}$	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 25 \ldots 100 \\ & 7 \ldots 10 \end{aligned}$
- Arcing time		ms	10... 15
Operating times for $1.0 \times \mathrm{U}{ }^{1}{ }^{\text {) }}$			
- AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 10 \ldots 25 \\ & 5 \ldots 30 \end{aligned}$
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 30 \ldots 50 \\ & 7 \ldots 9 \end{aligned}$

${ }^{1)}$ The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

Contactors	Type Size			$\begin{aligned} & \text { 3RT10 } 15 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 16 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 17 \\ & \text { S00 } \end{aligned}$
Main circuit						
AC capacity						
Utilization category AC-1 Switching resistive loads						
- Rated operational current I_{e}		At $40^{\circ} \mathrm{C}$ up to 690 V At $60^{\circ} \mathrm{C}$ up to 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \end{aligned}$
- Rated power for AC loads ${ }^{1)}$ P.f. $=0.95$ (at $60^{\circ} \mathrm{C}$)		$\begin{aligned} & 230 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 6.3 \\ & 11 \\ & 13.8 \\ & 19 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 13 \\ & 17 \\ & 22 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 13 \\ & 17 \\ & 27 \end{aligned}$
- Minimum conductor cross-section for loads with I_{e}		$\begin{aligned} & \text { At } 40^{\circ} \mathrm{C} \\ & \text { At } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$
Utilization categories AC-2 and AC-3						
- Rated operational currents I_{e}		$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \\ 440 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	A A A A	$\begin{aligned} & 7 \\ & 7 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 6.5 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \\ & 9 \\ & 6.3 \end{aligned}$
- Rated power for slipring or squirrelcage motors at 50 and 60 Hz		$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3 \\ & 3.5 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 5.5 \\ & 5.5 \\ & 5.5 \end{aligned}$
Thermal load capacity		10 s current ${ }^{2)}$	A	56	72	96

[^3]
3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Switching gas discharge lamps with correction

per main current path at 230 V

- Shunt compensation with inductive ballast, rated power per lamp/capacitance/ rated operational current per lamp
- With solid-state ballast ${ }^{2}$) single lamp
- With solid-state ballast ${ }^{2}{ }^{2}$ two-lamp

Win	L $18 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	27 ($=2 \times 27$ lamps)	35 ($=2 \times 35$ lamps)	35 (气 2×35 lamps)
	L $36 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.35 \mathrm{~A}$	Units	14 ($=2 \times 14$ lamps)	18 ($=2 \times 18$ lamps)	18 (气 2×18 lamps)
	L $58 \mathrm{~W} / 22 \mu \mathrm{~F} / 0.52 \mathrm{~A}$	Units	9 ($=2 \times 9$ lamps)	12 ($=2 \times 12$ lamps)	12 ($\widehat{=2 \times 12 ~ l a m p s) ~}$
	L $80 \mathrm{~W} / 22 \mu \mathrm{~F} / 0.86 \mathrm{~A}$	Units	5 ($=2 \times 5$ lamps)	7 ($=2 \times 7$ lamps)	7 ($=2 \times 7$ lamps)
Utilization category AC-5b, switch	nt lamps	kW	1.3	1.7	1.7

per main current path at 230/220 V

Utilization category AC-6a

 switching AC transformers- Rated operational current I_{e}

- For inrush current $\mathrm{n}=20$	Up to 400 V	A	3.6	5.1	7.2
- For inrush current $\mathrm{n}=30$	Up to 400 V	A	2.4	3.3	5.1
- Rated power P					
- For inrush current $\mathrm{n}=20$	At 230 V	kVA	1.4	2	2.9
	400 V	kVA	2.5	3.5	5
	500 V	kVA	3.3	4.6	6.2
	690 V	kVA	4.3	6	8.6
- For inrush current $\mathrm{n}=30$	At 230 V	kVA	1	1.3	2
	400 V	kVA	1.6	2.3	3.5
	500 V	kVA	2.2	3.1	4.6
	690 V	kVA	2.9		

For deviating inrush current factors x , the power must be recalculated as follows: $P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$

1) The data only apply to 3RT15 16 and 3RT15 17 (2 NO + 2 NC) up to a rated operational voltage of 400 V .
${ }^{2)}$ Depending on the electronic ballast used, higher lamp numbers are also possible.

Contactors	Type Size			$\begin{aligned} & \text { 3RT10 } 15 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 16 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 17 \\ & \text { S00 } \end{aligned}$
Main circuit						
Load rating with DC						
Utilization category DC-1 Switching resistive loads ($L / R \leq 1 \mathrm{~ms}$) - Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)						
- 1 conducting path		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 15 \\ & 15 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 2.1 \end{aligned}$	
		$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 0.6 \\ & 0.42 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \\ & 0.6 \end{aligned}$	
- 2 conducting paths in series		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 15 \\ & 15 \\ & 8.4 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 12 \end{aligned}$	
		$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 1.2 \\ & 1.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 0.8 \\ & 0.7 \end{aligned}$	
- 3 conducting paths in series		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	
		$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 15 \\ & 0.9 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 20 \\ & 1.3 \\ & 1 \end{aligned}$	
Utilization category DC-3 and DC-5 Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$) - Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)						
- 1 conducting path		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 15 \\ & 0.35 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.5 \\ & 0.15 \end{aligned}$	
		$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & \text {-- } \\ & \text {-- } \end{aligned}$		
- 2 conducting paths in series		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 15 \\ & 3.5 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 20 \\ & 5 \\ & 0.35 \end{aligned}$	
		$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & -- \\ & -- \\ & \text {-- } \end{aligned}$		
- 3 conducting paths in series		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	
		$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 1.2 \\ & 0.14 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.2 \\ & 0.2 \end{aligned}$	

Switching frequency
Switching frequency \mathbf{z} in operating cycles/hour
$\left.\begin{array}{lrlll}\text { - Contactors without overload relay } & \begin{array}{l}\text { No-load switching frequency AC } \\ \text { No-load switching frequency DC }\end{array} & h^{-1} & 10000 \\ \text { Dependence of the switching fre- } & \text { Rated operation }\end{array}\right)$

Conductor cross-sections Main and auxiliary conductors:
(1 or 2 conductors can be connected) •Solid
For standard screwdriver size 2 and
Pozidriv 2

- Finely stranded with end sleeve
- Solid or stranded, AWG cables
- Terminal screw
- Tightening torque

Main and auxiliary conductors; coil terminals:
(1 or 2 conductors can be connected) - Solid

- Finely stranded with end sleeve
- Finely stranded without end
sleeve
- AWG cables, solid or stranded

For tools for opening Cage Clamp terminals see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
Maximum external diameter of the conductor insulation: 3.6 mm
For conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, "Accessories and Spare Parts".

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

1) For endurance of the main contacts see page $3 / 18$.
2) For conductor cross-sections see page 3/28
3) Test conditions according to IEC 60947-4-1.

Contactors	Type Size		$\begin{aligned} & \text { 3RT10 } 2 . \\ & \text { S0 } \end{aligned}$			
Control						
Magnetic coil operating range	AC/DC		0.8 ... $1.1 \times$			
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{\mathrm{s}}$)						
- AC operation, 50 Hz , standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 61 \\ & 0.82 \\ & 7.8 \\ & 0.24 \end{aligned}$			
- AC operation, $50 / 60 \mathrm{~Hz}$, standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 64 / 63 \\ & 0.72 / 0.74 \\ & 8.4 / 6.8 \\ & 0.24 / 0.28 \end{aligned}$			
- AC operation, 50 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 61 \\ & 0.82 \\ & 7.8 \\ & 0.24 \end{aligned}$			
- AC operation, 60 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 69 \\ & 0.76 \\ & 7.5 \\ & 0.28 \end{aligned}$			
- DC operation	Closing = Closed	W	5.4			
Permissible residual current of the electronics (with 0 signal)						
	- AC operation - DC operation	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & <6 \mathrm{mAx} \\ & <16 \mathrm{mAx} \end{aligned}$			
Total break time $=$ Opening delay + Arcing time						
- AC operation	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 8 \ldots 44 \\ & 4 \ldots 20 \end{aligned}$			
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 50 \ldots 170 \\ & 13.5 \ldots 15.4 \end{aligned}$			
- Arcing time		ms	10			
Operating times for $1.0 \times \mathrm{U}{ }^{1}{ }^{\text {) }}$						
- AC operation	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 10 \ldots 17 \\ & 4 \ldots 20 \end{aligned}$			
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 55 \ldots 85 \\ & 14 \ldots 15.5 \end{aligned}$			
1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).						
Contactors	Type Size		$\begin{aligned} & \text { 3RT10 } 23 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 24 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 25 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 26 \\ & \text { S0 } \end{aligned}$
Main circuit						
AC capacity						
Utilization category AC-1 Switching resistive loads						
- Rated operational current I_{e}	At $40^{\circ} \mathrm{C}$ up to 690 V At $60^{\circ} \mathrm{C}$ up to 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$			
- Rated power for AC loads ${ }^{1)}$ P.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 230 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	kW kW kW kW	$\begin{aligned} & 13.3 \\ & 23 \\ & 29 \\ & 40 \end{aligned}$			
- Minimum conductor cross-section for loads with I_{e}	$\begin{aligned} & \text { At } 40^{\circ} \mathrm{C} \\ & \text { At } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$			
Utilization category AC-2 and AC-3						
- Rated operational currents I_{e}	$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \\ 440 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 6.5 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 9 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 13 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \\ & 18 \\ & 13 \end{aligned}$
- Rated power for slipring or squirrelcage motors at 50 Hz and 60 Hz	$\begin{array}{r} \text { At } 110 \mathrm{~V} \\ 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 660 \mathrm{~V} / 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 3 \\ & 4 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3 \\ & 5.5 \\ & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 4 \\ & 7.5 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 5.5 \\ & 11 \\ & 11 \\ & 11 \end{aligned}$
Thermal load capacity	10 s current ${ }^{2}$)	A	80	110	150	200
Power loss per conducting path	At $I_{\mathrm{e}} /$ AC-3	W	0.4	0.5	0.9	1.6

1) Industrial furnaces and electric heaters with resistance heating, etc.
(increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions
see "Protection Equipment --> Overload Relays".

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Utilization category AC-5a
Switching gas discharge lamps, inductive ballast
Per main current path at $230 \mathrm{~V}^{1 \text {) }}$

- Rated power per lamp/rated operational current per lamp

- Uncorrected	$\mathrm{L} 18 \mathrm{~W} / 0.37 \mathrm{~A}$	Units	108
	$\mathrm{~L} 36 \mathrm{~W} / 0.43 \mathrm{~A}$	Units	93
	$\mathrm{~L} 58 \mathrm{~W} / 0.67 \mathrm{~A}$	Units	59
- DUO switching (two-lamp)	$\mathrm{L} 80 \mathrm{~W} / 0.79 \mathrm{~A}$	Units	50
	$\mathrm{~L} 18 \mathrm{~W} / 0.22 \mathrm{~A}$	Units	$181(\hat{=} 2 \times 181$ lamps $)$
	$\mathrm{L} 36 \mathrm{~W} / 0.42 \mathrm{~A}$	Units	$95(\hat{=} 2 \times 95$ lamps $)$
	$\mathrm{L} 58 \mathrm{~W} / 0.63 \mathrm{~A}$	Units	$63(\hat{=} 2 \times 63$ lamps $)$
	$\mathrm{L} 80 \mathrm{~W} / 0.87 \mathrm{~A}$	Units	$45(\hat{=} 2 \times 45$ lamps $)$

Switching gas discharge lamps with correction
Per main current path at 230 V

- Rated power per lamp/capacitance/rated operational current per lamp

- Shunt compensation with inductive ballast	L 18W/4.5 $\mu \mathrm{F} / 0.11 \mathrm{~A}$	Units	37	41	61
	L 36 W/4.5 $\mu \mathrm{F} / 0.21 \mathrm{~A}$	Units	30	30	51
	L $58 \mathrm{~W} / 7.0 \mu \mathrm{~F} / 0.32 \mathrm{~A}$	Units	20	20	33
	L $80 \mathrm{~W} / 7.0 \mu \mathrm{~F} / 0.49 \mathrm{~A}$	Units	13	13	22
- With solid-state ballast ${ }^{2}{ }^{2}$ single lamp	L $18 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.10 \mathrm{~A}$	Units	105	119	175
	L $36 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.18 \mathrm{~A}$ $\mathrm{~L} 8 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.29 \mathrm{~A}$	Units Units	58	$\begin{aligned} & 66 \\ & 11 \end{aligned}$	97
	L $58 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.29 \mathrm{~A}$ L $80 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.43 \mathrm{~A}$	Units Units	$\begin{aligned} & 36 \\ & 24 \end{aligned}$	$\begin{aligned} & 41 \\ & 27 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \end{aligned}$
- With solid-state ballast ${ }^{2}{ }^{\text {) }}$ two-lamp	L $18 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	58 (气 $2 \times 58 \mathrm{lamps}$)	66 ($=2 \times 66$ I.)	97 ($=2 \times 97$ I.)
	L $36 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.35 \mathrm{~A}$	Units	30 ($=2 \times 30 \mathrm{lamps}$)	34 (50 (
	L $58 \mathrm{~W} / 22 \mu \mathrm{~F} / 0.52 \mathrm{~A}$	Units	20 ($=2 \times 20 \mathrm{lamps}$)	22 ($=2 \times 221$)	$33(\hat{=} 2 \times 331$.
	L $80 \mathrm{~W} / 22 \mu \mathrm{~F} / 0.86 \mathrm{~A}$	Units	12 ($=2 \times 12 \mathrm{lamps}$)	13 ($=2 \times 13$ I.)	20 ($=2 \times 20$ I.)
Utilization category AC-5b, switching incandescent lamps		kW	2.8	3.2	4.7

per main current path at 230/220 V

Utilization category AC-6a
 switching AC transformers

- Rated operational current I_{e}
- For inrush current $\mathrm{n}=20$
- For inrush current $\mathrm{n}=30$

Up to 400 V	A	11.4	20.2
Up to 400 V	A	7.6	13.5
At 230 V	kVA	4.5	8
400 V	kVA	7.9	13.9
500 V	kVA	9.9	15.5
690 V	kVA	13.6	15.5
At 230 V	kVA	3	5.4
400 V	kVA	5.2	9.3
500 V	kVA	6.6	11.7
690 V	kVA	9.1	15.5

For deviating inrush current factors x , the power must be recalculated as follows:
$P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$

Utilization category AC-6b,

switching low-inductance (low-loss, metallized dielectric) AC capacitors

- Rated power for single capacitors or Up to 400 V A

At 230 V . 5.8
10.8

At 230 V kvar
4 banks of capacitors (minimum inductance of $6 \mu \mathrm{H}$ between capacitors con-
500 V kvar 4
500 V kvar 4 7.5 nected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and
690 V kvar
7.5

1) For $I_{\mathrm{e}} / \mathrm{AC}-1=35 \mathrm{~A}\left(60^{\circ} \mathrm{C}\right)$ and the corresponding minimum conductor cross-section $10 \mathrm{~mm}^{2}$.
${ }^{2)}$ Depending on the electronic ballast used, higher lamp numbers are also possible.

Contactors $\begin{array}{ll}\text { (} \\ & \text { Type } \\ \text { Size }\end{array}$			$\begin{aligned} & \text { 3RT10 } 23 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 24 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 25 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 26 \\ & \text { S0 } \end{aligned}$
Main circuit						
Load rating with DC						
Utilization category DC-1 Switching resistive loads ($L / R \leq 1 \mathrm{~ms}$)						
- Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$) - 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \\ & 4.5 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & 0.4 \\ & 0.25 \end{aligned}$			
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & 0.8 \end{aligned}$			
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & A \\ & A \\ & A \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 2.9 \\ & 1.4 \\ & \hline \end{aligned}$			
Utilization category DC-3 and DC-5 Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$) - Rated operational current $I_{\mathrm{e}}\left(\right.$ at $60^{\circ} \mathrm{C}$)						
- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 20 \\ & 5 \\ & 2.5 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & 0.09 \\ & 0.06 \end{aligned}$			
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 15 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 0.27 \\ & 0.16 \end{aligned}$			
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 0.6 \\ & 0.6 \\ & \hline \end{aligned}$			
Switching frequency						
Switching frequency \boldsymbol{z} in operating cycles/hour						
- Contactors without overload relays	No-load switching frequency AC No-load switching frequency DC	h^{-1} h^{-1}	5000 1500			
Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$	AC-1 (AC/DC) AC-2 (AC/DC) AC-3 (AC/DC) AC-4 (AC/DC)	$\begin{aligned} & h^{-1} \\ & h^{-1} \\ & h^{-1} \\ & h^{-1} \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 300 \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 250 \end{aligned}$
- Contactors with overload relays (mean value)		h^{-1}	15			

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

[^4]
3RT10 contactors, 3-pole, 3 ... 250 kW

Contactors	Type		3RT10 35
	Size		3RT10 34
S2			

1) Test conditions according to IEC 60947-4-1.
2) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).

3RT，3TB，3TF Contactors for Switching Motors

3RT10 contactors，3－pole， 3 ．．． 250 kW

Switching gas discharge lamps with correction

Per main current path at 230 V
－Shunt compensation with inductive ballast， rated power per lamp／capacitance／rated operational current per lamp
－With solid－state ballast ${ }^{3}$ ） single lamp
－With solid－state ballast ${ }^{3}$ ） two－lamp

L $18 \mathrm{~W} / 4.5 \mu \mathrm{~F} / 0.11 \mathrm{~A}$	Units	78	98	123
L 36 W／4．5 $\mu \mathrm{F} / 0.21 \mathrm{~A}$	Units	78	98	123
L 58 W／7 $\mu \mathrm{F} / 0.32 \mathrm{~A}$	Units	50	63	79
L $80 \mathrm{~W} / 7 \mu \mathrm{~F} / 0.49 \mathrm{~A}$	Units	50	63	73
L $18 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.10 \mathrm{~A}$	Units	224	280	350
L $36 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	124	155	194
L $58 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.29 \mathrm{~A}$	Units	77	96	120
L $80 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.43 \mathrm{~A}$	Units	52	65	81
$\mathrm{L} 18 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	124 （气 $2 \times 124 \mathrm{lamps}$ ）	155 （气 $2 \times 155 \mathrm{lamps}$ ）	194 （气㐅 2×194 lamps）
L $36 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.35 \mathrm{~A}$	Units	64 （ $=2 \times 64$ lamps）	80 （ $=2 \times 80 \mathrm{lamps}$ ）	100 （ $=2 \times 100 \mathrm{lamps}$ ）
L $58 \mathrm{~W} / 22 \mu \mathrm{~F} / 0.52 \mathrm{~A}$	Units	43 （ $=2 \times 43$ lamps）	54 （ $\widehat{=} 2 \times 54$ lamps）	67 （ $=2 \times 67 \mathrm{lamps}$ ）
L $80 \mathrm{~W} / 22 \mu \mathrm{~F} / 0.86 \mathrm{~A}$	Units	26 （ $=2 \times 26$ lamps）	32 （ $=2 \times 32$ lamps）	40 （ $=2 \times 40$ lamps）

1）Industrial furnaces and electric heaters with resistance heating，etc． （increased power consumption on heating up has been taken into account）．

2）According to IEC 60947－4－1
For rated values for various start－up conditions see
＂Protection Equipment－－＞Overload Relays
${ }^{3)}$ Depending on the electronic ballast used，higher lamp numbers are also possible．

$\begin{array}{ll}\text { Contactors } & \text { Type } \\ & \text { Size }\end{array}$	Type Size		$\begin{aligned} & \text { 3RT10 } 34 \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 35 \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 36 \\ & \text { S2 } \end{aligned}$
Main circuit					
AC capacity					
Utilization category AC-5b Switching incandescent lamps Per main current path at 230/220 V		kW	6.0	7.6	9.5
Utilization category AC-6a switching AC transformers					
- Rated operational current I_{e} - For inrush current $\mathrm{n}=20$ - For inrush current $\mathrm{n}=30$	Up to 400 V Up to 400 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 31 \\ & 20.7 \end{aligned}$	$\begin{aligned} & 36.5 \\ & 24.3 \end{aligned}$	$\begin{aligned} & 43.2 \\ & 28.8 \end{aligned}$
- Rating P					
- For inrush current $\mathrm{n}=20$	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	kVA kVA kVA kVA	$\begin{aligned} & 12.3 \\ & 21.5 \\ & 26.8 \\ & 23.9 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 25.3 \\ & 31.6 \\ & 28.7 \end{aligned}$	$\begin{aligned} & 17.2 \\ & 29.9 \\ & 37.4 \\ & 28.7 \end{aligned}$
- For inrush current $\mathrm{n}=30$	$\begin{aligned} & 230 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	kVA kVA kVA kVA	$\begin{aligned} & 8.2 \\ & 14.3 \\ & 17.9 \\ & 23.9 \end{aligned}$	$\begin{aligned} & 9.7 \\ & 16.8 \\ & 21 \\ & 28.7 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 20 \\ & 24.9 \\ & 28.7 \end{aligned}$
For deviating inrush current factors x , the power must be recalculated as follows.$P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$					
Utilization category AC-6b Switching low-inductance (low-loss, metallized dielectric) AC capacitors Ambient temperature $40^{\circ} \mathrm{C}$					
- Rated operational currents I_{e}	Up to 400 V	A	29	36	36
- Rated power for single capacitors or banks of capacitors (minimum inductance of $20 \mu \mathrm{H}$ between capacitors connected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 525 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	kvar kvar kvar kvar	$\begin{aligned} & 12 \\ & 20 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \\ & 33 \\ & 25 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \\ & 33 \\ & 25 \end{aligned}$

Load rating with DC

Utilization category DC-1
 Switching resistive loads ($L / R<1 \mathrm{~ms}$)

- Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)

- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 45 \\ & 20 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 55 \\ & 23 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 55 \\ & 23 \\ & 4.5 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 2 \\ & 0.4 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 2 \\ & 0.4 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 2 \\ & 0.4 \\ & 0.25 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \\ & 45 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 5 \\ & 1 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & 0.8 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 45 \\ & 2.9 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 45 \\ & 2.9 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 45 \\ & 2.9 \\ & 1.4 \end{aligned}$

Utilization category DC-3 and DC-5
Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational current $I_{\mathrm{e}}\left(\right.$ at $60^{\circ} \mathrm{C}$)
-1 conducting path
-2 conducting paths in series
-3 conducting paths in series

Up to 24 V	A	35	35	35
60 V	A	6	6	6
110 V	A	2.5	2.5	2.5
220 V	A	2	2	2
440 V	A	0.1	0.1	0.1
600 V	A	0.06	0.06	0.06
Up to 24 V	A	45	45	55
60 V	A	45	25	45
110 V	A	25	5	25
220 V	A	5	0.27	5
440 V	A	0.27	0.16	0.27
600 V	A	0.16	55	0.16
Up to 24 V	A	45	55	55
60 V	A	45	55	55
110 V	A	45	25	55
220 V	A	25	0.6	25
440 V	A	0.6	0.6	0.6
600 V	A	0.6		0.6

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactors	Type Size		$\begin{aligned} & \text { 3RT10 } 34 \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 35 \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 36 \\ & \text { S2 } \end{aligned}$
Switching frequency					
Switching frequency \mathbf{z} in operating cycles/hour					
- Contactors without overload relays	No-load switching frequency AC No-load switching frequency DC	$\begin{aligned} & h^{-1} \\ & h^{-1} \end{aligned}$	$\begin{aligned} & 5000 \\ & 1500 \end{aligned}$	$\begin{aligned} & 5000 \\ & 1500 \end{aligned}$	$\begin{aligned} & 5000 \\ & 1500 \end{aligned}$
Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$ - Contactors with overload relays (m	$\begin{aligned} & \mathrm{AC}-1 \text { (AC/DC) } \\ & \mathrm{AC}-2 \text { (} \mathrm{AC} / \mathrm{DC} \text {) } \\ & \mathrm{AC}-3 \text { (AC/DC) } \\ & \mathrm{AC}-4 \text { (AC/DC) } \end{aligned}$	$\begin{aligned} & h^{-1} \\ & h^{-1} \\ & h^{-1} \\ & h^{-1} \\ & h^{-1} \end{aligned}$	$\begin{aligned} & 1200 \\ & 750 \\ & 1000 \\ & 250 \\ & 15 \end{aligned}$	$\begin{aligned} & 1200 \\ & 600 \\ & 1000 \\ & 300 \\ & 15 \end{aligned}$	$\begin{aligned} & 1000 \\ & 400 \\ & 800 \\ & 300 \\ & 15 \end{aligned}$

Contactors	Type	3RT10 3.
	Size	S2

Conductor cross-sections (1 or 2 conductors connectable)

Main conductors:

With box terminal

- Finely stranded with end sleeve
- Finely stranded without end sleeve
- Stranded
- Solid
- Ribbon cable conductors
(number \times width \times thickness)
- AWG cables,
solid or stranded
- Finely stranded with end sleeve
- Finely stranded without end sleeve
- Stranded
- Solid
- Ribbon cable conductors (number \times width x thickness)
- AWG cables. solid or stranded
- Finely stranded with end sleeve $\mathrm{mm}^{2} \quad 2 \times(0.75 \ldots$ 16)
- Finely stranded without end sleeve

Stranded

- Solid
- Ribbon cable conductors (number \times width \times thickness)
- AWG cables, solid or stranded
- Terminal screw
- Tightening torque

Auxiliary conductors:

- Solid
- Finely stranded with end sleeve
- AWG cables, solid or stranded
- Terminal screw
- Tightening torque

Auxiliary conductors:
Solid

- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG cables,
solid or stranded

Screw terminals

$\mathrm{mm}^{2} \quad 0.75 \ldots 25$
$\mathrm{mm}^{2} \quad 0.75 \ldots 25$
$\mathrm{mm}^{2} \quad 0.75 \ldots 35$
$\mathrm{mm}^{2} \quad 0.75 \ldots 16$
mm $\quad 6 \times 9 \times 0.8$

AWG $18 \ldots 2$
$\mathrm{mm}^{2} \quad 0.75 \ldots 25$
$\mathrm{mm}^{2} \quad 0.75 \ldots 25$
$\mathrm{mm}^{2} \quad 0.75 \ldots 35$
$\mathrm{mm}^{2} \quad 0.75 \ldots 16$
mm $\quad 6 \times 9 \times 0.8$
AWG $18 \ldots 2$
$\begin{array}{lll}\mathrm{mm}^{2} & 2 \times(0.75 \ldots & 16) \\ \mathrm{mm}^{2} & 2 \times(0.75 \ldots & 16)\end{array}$
$\mathrm{mm}^{2} \quad 2 \times(0.75 \ldots 25)$
$\mathrm{mm}^{2} 2 \times(0.75 \ldots 16)$
mm $2 \times(6 \times 9 \times 0.8)$
AWG $2 \times(18 \ldots 2)$

M6 (Pozidriv size 2)
Nm $3 \ldots 4.5$ (27 ... $40 \mathrm{lb} . \mathrm{in})$
$\mathrm{mm}^{2} \quad 2 \times(0.5 \ldots 1.5)^{1)} ; 2 \times(0.75 \ldots 2.5)^{1)}$ acc. to IEC 60947;
$\max .2 \times(0.75 \ldots 4)$
$\left.\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5)^{1}\right) ; 2 \times(0.75 \ldots 2.5)^{1}$
AWG $2 \times(20 \ldots 16)^{1)} ; 2 \times(18 \ldots 14)^{1} ; 1 \times 12$
M3
$\mathrm{Nm} \quad 0.8$... 1.2 (7 ... $10.3 \mathrm{lb} . \mathrm{in})$

Cage Clamp terminals

$2 \times(24 \ldots 14)$

For tools for opening Cage Clamp terminals see Catalog LV 1 ,
Chapter 3, Accessories and Spare Parts.
Maximum external diameter of the conductor insulation: 3.6 mm .
For conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, "Accessories and Spare Parts".

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactors	Type Size		$\begin{aligned} & \text { 3RT10 } 44 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 45 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 46 \\ & \text { S3 } \end{aligned}$
Control					
Magnetic coil operating range	AC/DC		0.8... $1.1 \times$		
Power consumption of the magnetic coils (when coil is cold and $1.0 \times U_{s}$)					
- AC operation, 50 Hz , standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 218 \\ & 0.61 \\ & 21 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 270 \\ & 0.68 \\ & 22 \\ & 0.27 \end{aligned}$	
- AC operation, $50 / 60 \mathrm{~Hz}$, standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 247 / 211 \\ & 0.62 / 0.57 \\ & 25 / 18 \\ & 0.27 / 0.3 \end{aligned}$	$\begin{aligned} & 298 / 274 \\ & 0.7 / 0.62 \\ & 27 / 20 \\ & 0.29 / 0.31 \end{aligned}$	
- AC operation, 50 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 218 \\ & 0.61 \\ & 21 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 270 \\ & 0.68 \\ & 22 \\ & 0.27 \end{aligned}$	
- AC operation, 60 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 232 \\ & 0.55 \\ & 20 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 300 \\ & 0.52 \\ & 21 \\ & 0.29 \end{aligned}$	
- DC operation	Closing = Closed	W	15	15	
Permissible residual current of the electronics (with 0 signal)					
	- AC operation - DC operation		$\begin{aligned} & <25 \mathrm{mAx} \\ & <43 \mathrm{mAx} \end{aligned}$		
Operating times for $0.8 \ldots 1.1 \times \mathbf{U}_{\mathrm{s}}{ }^{1)}$ Total break time $=$ Opening delay + Arcing time					
- AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 16 \ldots 57 \\ & 10 . . . ~ \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \ldots 90 \\ & 10 \ldots 25 \end{aligned}$	
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 90 \ldots 230 \\ & 14 \ldots 20 \end{aligned}$	$\begin{aligned} & 90 \ldots 230 \\ & 14 \ldots 20 \end{aligned}$	
- Arcing time		ms	$10 \ldots 15$	$10 \ldots 15$	
Operating times for $1.0 \times \mathbf{U S}^{1}{ }^{1 \text {) }}$ - AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 18 \ldots 34 \\ & 11 . . . ~ \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \ldots 30 \\ & 11 . . .23 \end{aligned}$	
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 100 \ldots 120 \\ & 16 \ldots 20 \end{aligned}$	$\begin{aligned} & 100 \ldots 120 \\ & 16 \ldots 20 \end{aligned}$	

Main circuit
AC capacity
Utilization category AC-1

Switching resistive loads

- Rated operational currents I_{e}	$\begin{array}{r} \text { At } 40^{\circ} \mathrm{C} \text { up to } 690 \mathrm{~V} \mathrm{~A} \\ 1000 \mathrm{~V} \mathrm{~A} \\ \text { At } 60^{\circ} \mathrm{C} \text { up to } 690 \mathrm{~V} \mathrm{~A} \\ 1000 \mathrm{~V} \mathrm{~A} \end{array}$	$\begin{aligned} & 100 \\ & 50 \\ & 90 \\ & 40 \end{aligned}$	$\begin{aligned} & 120 \\ & 60 \\ & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 120 \\ & 70 \\ & 100 \\ & 60 \end{aligned}$
- Rated output of $A C$ loads ${ }^{2)}$ P.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$	$\begin{array}{r} \text { At } 230 \mathrm{~V} \mathrm{~kW} \\ 400 \mathrm{~V} \mathrm{~kW} \\ 500 \mathrm{~V} \mathrm{~kW} \\ 690 \mathrm{VWW} \\ 1000 \mathrm{~V} \mathrm{~kW} \end{array}$	$\begin{aligned} & 34 \\ & 59 \\ & 74 \\ & 102 \\ & 66 \end{aligned}$	$\begin{aligned} & 38 \\ & 66 \\ & 82 \\ & 114 \\ & 82 \end{aligned}$	$\begin{aligned} & 38 \\ & 66 \\ & 82 \\ & 114 \\ & 98 \end{aligned}$
- Minimum conductor cross-section for loads with I_{e}	At $40^{\circ} \mathrm{C} \mathrm{mm}{ }^{2}$ At $60^{\circ} \mathrm{C} \mathrm{mm}{ }^{2}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 35 \end{aligned}$
Utilization categories AC-2 and AC-3				
- Rated operational currents I_{e}	$\begin{array}{r} \text { Up to } 500 \vee \mathrm{~V} \\ 690 \mathrm{~V} \text { A } \\ 1000 \mathrm{~V} \mathrm{~A} \end{array}$	$\begin{aligned} & 65 \\ & 47 \\ & 25 \end{aligned}$	$\begin{aligned} & 80 \\ & 58 \\ & 30 \end{aligned}$	$\begin{aligned} & 95 \\ & 58 \\ & 30 \end{aligned}$
- Rated power of slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { At } 230 \mathrm{~V} \mathrm{~kW} \\ 400 \mathrm{~kW} \\ 500 \mathrm{~V} \mathrm{~kW} \\ 690 \mathrm{~V} \mathrm{~kW} \\ 1000 \mathrm{~V} \mathrm{~kW} \end{array}$	$\begin{aligned} & 18.5 \\ & 30 \\ & 37 \\ & 45 \\ & 30 \end{aligned}$	$\begin{aligned} & 22 \\ & 37 \\ & 45 \\ & 55 \\ & 37 \end{aligned}$	$\begin{aligned} & 22 \\ & 45 \\ & 55 \\ & 55 \\ & 37 \\ & \hline \end{aligned}$
Thermal load capacity	10 s current ${ }^{3}$ A	600	760	760
Power loss per conducting path	At $I_{\mathrm{e}} /$ AC-3 W	4.6	7.7	10.8

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).
2) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
3) According to IEC 60947-4-1

For rated values for various start-up conditions see
"Protection Equipment --> Overload Relays".

Utilization category AC-5a
Switching gas discharge lamps, inductive ballast
Per main current path at 230 V

- Uncorrected,
rated power per lamp/rated operational current per lamp

	L 18 W/0.37 A	Units	270	324	
	L $36 \mathrm{~W} / 0.43 \mathrm{~A}$	Units	232	279	
	L 58 W/0.67 A	Units	149	179	
	L 80 W/0.79 A	Units	126	151	
- DUO switching (two-lamp)					
	L 18 W/0.21 A	Units	454 ($=2 \times 454$ lamps)	545 ($=2 \times 545 \mathrm{lamps}$)	
	L $36 \mathrm{~W} / 0.42 \mathrm{~A}$	Units	238 (285 ($=2 \times 285 \mathrm{lamps}$)	
	L 58 W/0.63 A	Units	158 ($=2 \times 158$ lamps)	190 ($=2 \times 190 \mathrm{lamps}$)	
	L 80 W/0.87 A	Units	114 ($=2 \times 114$ lamps)	137 (气 $2 \times 137 \mathrm{lamps}$)	
Switching gas discharge lamps with correction Per main current path at 230 V					
- Shunt compensation with inductive ballast, rated power per lamp/capacitance/rated operational current per lamp					
	L $18 \mathrm{~W} / 4.5 \mu \mathrm{~F} / 0.11 \mathrm{~A}$	Units	160	197	234
	L $36 \mathrm{~W} / 4.5 \mu \mathrm{~F} / 0.21 \mathrm{~A}$	Units	160	197	234
	L $58 \mathrm{~W} / 7 \mu \mathrm{~F} / 0.32 \mathrm{~A}$	Units	103	127	150
	L $80 \mathrm{~W} / 7 \mu \mathrm{~F} / 0.49 \mathrm{~A}$	Units	103	126	146
- With solid-state ballast ${ }^{1)}$ single lamp					
	L $18 \mathrm{~W} / 6.8 \mu \mathrm{~F} / 0.10 \mathrm{~A}$	Units	455	560	665
	L 36 W/6.8 $\mu \mathrm{F} / 0.18 \mathrm{~A}$	Units	253	311	369
	L $58 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.29 \mathrm{~A}$	Units	156	193	229
	L $80 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.43 \mathrm{~A}$	Units	105	130	154
- With solid-state ballast ${ }^{1)}$ two-lamp					
	L $18 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.18 \mathrm{~A}$	Units	253 ($=2 \times 253$ lamps)	311 ($=2 \times 311$ lamps)	369 ($=2 \times 369$ lamps)
	L $36 \mathrm{~W} / 10 \mu \mathrm{~F} / 0.35 \mathrm{~A}$	Units	130 ($=2 \times 130$ lamps)	160 ($=2 \times 160 \mathrm{lamps}$)	190 ($=2 \times 190$ lamps)
	L 58 W/22 $\mu \mathrm{F} / 0.52 \mathrm{~A}$	Units	88 ($\widehat{=2 \times 88 \text { lamps) }}$	108 ($=2 \times 108 \mathrm{lamps}$)	128 ($\widehat{\text { 2 }}$ x 128 lamps)
	L $80 \mathrm{~W} / 22 \mu \mathrm{~F} / 0.86 \mathrm{~A}$	Units	52 ($=2 \times 52 \mathrm{lamps}$)	65 ($\widehat{=2 \times 65}$ lamps)	77 ($\widehat{=} 2 \times 77$ lamps)
Utilization category AC-5b					
Switching incandescent lamps					
Per main current path at 230/220 V		kW	12.3	15.2	18.1

[^5]
3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Load rating with DC

Utilization category DC-1

Switching resistive load ($L / R \leq 1 \mathrm{~ms}$)

- Rated operational current $I_{\mathrm{e}}\left(60^{\circ} \mathrm{C}\right)$

- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 90 \\ & 23 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 60 \\ & 9 \end{aligned}$	$\begin{aligned} & 100 \\ & 60 \\ & 9 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 1 \\ & 0.4 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 2 \\ & 0.6 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 2 \\ & 0.6 \\ & 0.4 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 5 \\ & 1 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 1.8 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 1.8 \\ & 1 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 70 \\ & 2.9 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 80 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 80 \\ & 4.5 \\ & 2.6 \end{aligned}$

Utilization category DC-3 and DC-5
Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational current $I_{\mathrm{e}}\left(60^{\circ} \mathrm{C}\right)$
-1 conducting path
-2 conducting paths in series
-3 conducting paths in series

Up to 24 V	A	40	40	40
60 V	A	6	6.5	6.5
110 V	A	2.5	2.5	2.5
220 V	A	1	1	1
440 V	A	0.15	0.15	0.15
600 V	A	0.06	0.06	0.06
Up to 24 V	A	90	100	100
60 V	A	90	100	100
110 V	A	90	100	100
220 V	A	7	7	7
440 V	A	0.42	0.42	0.42
600 V	A	0.16	100	0.16
Up to 24 V	A	90	100	100
60 V	A	90	100	100
110 V	A	90	35	100
220 V	A	35	0.8	35
440 V	A	0.8	0.35	0.8
600 V	A	0.35		0.35

Contactors	Type Size		$\begin{aligned} & \text { 3RT10 } 44 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 45 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 46 \\ & \text { S3 } \end{aligned}$
Main circuit					
Switching frequency					
Switching frequency \boldsymbol{z} in operating cycles/hour					
- Contactors without overload relays	No-load switching frequency AC		5000	5000	5000
den	No-load switching frequency DC	h^{-1}	1000	1000	1000
Dependence of the switching fre-	AC-1 (AC/DC)	h^{-1}	1000	900	900
quency z^{\prime} on the operational current	AC-2 (AC/DC)	h^{-1}	400	400	350
I^{\prime} and operational voltage U^{\prime} :	AC-3 (AC/DC)	h^{-1}	1000	1000	850
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / \mathrm{I}^{\prime}\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$	AC-4 (AC/DC)	h^{-1}	300	300	250
- Contactors with overload relays (mea	n value)	h^{-1}	15	15	15

Contactors	Type Size		$\begin{aligned} & \text { 3RT10 } 4 . \\ & \text { S3 } \end{aligned}$
Conductor cross-sections (1 or 2 conductors connectable)			
	Main conductors: With box terminal		$($ () Screw terminals
Front clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Solid - Stranded - Ribbon cable conductors (number \times width x thickness) - AWG cables, solid or stranded	mm^{2} mm^{2} mm^{2} mm^{2} mm AWG	$\begin{aligned} & 2.5 \ldots 35 \\ & 4 \ldots 50 \\ & 2.5 \ldots 16 \\ & 4 \ldots 70 \\ & 6 \times 9 \times 0.8 \\ & 10 \ldots 2 / 0 \end{aligned}$
Rear clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Solid - Stranded - Ribbon cable conductors (number x width x thickness) - AWG cables, solid or stranded	mm^{2} mm^{2} mm^{2} mm^{2} mm AWG	$\begin{aligned} & 2.5 \ldots 50 \\ & 10 \ldots 50 \\ & 2.5 \ldots 16 \\ & 10 \ldots 70 \\ & 6 \times 9 \times 0.8 \\ & 10 \ldots 2 / 0 \end{aligned}$
Both clamping points connected	- Finely stranded with end sleeve - Finely stranded without end sleeve - Solid - Stranded - Ribbon cable conductors (number \times width x thickness) - AWG cables, solid or stranded - Terminal screw - Tightening torque	mm^{2} mm^{2} mm^{2} mm^{2} mm AWG Nm	$\begin{aligned} & 2 \times(2.5 \ldots 35) \\ & 2 \times(4 \ldots 35) \\ & 2 \times(2.5 \ldots 16) \\ & 2 \times(4 \ldots 50) \\ & 2 \times(6 \times 9 \times 0.8) \\ & 2 \times(10 \ldots 1 / 0) \end{aligned}$ M6 (hexagon socket, A/F 4) 4 ... 6 (36 ... $53 \mathrm{lb} . \mathrm{in}$)
Connection for drilled copper bars ${ }^{11}$	Max. width	mm	10
Without box terminal with cable lugs ${ }^{2}$) (1 or 2 conductors can be connected)	- Finely stranded with cable lug - Stranded with cable lug - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 10 \ldots 50^{3)} \\ & 10 \ldots 70^{3)} \\ & 7 \ldots 1 / 0 \end{aligned}$
	Auxiliary conductors: - Solid - Finely stranded with end sleeve - AWG cables, solid or stranded - Terminal screw - Tightening torque	mm^{2} mm^{2} AWG Nm	$\begin{aligned} & 2 \times(0.5 \ldots 1.5)^{4)} ; 2 \times(0.75 \ldots 2.5)^{4)} \text { acc. to IEC 60947; } \\ & \operatorname{max.} 2 \times(0.75 ; 4) \\ & 2 \times(0.5 \ldots 1.5)^{4)} ; 2 \times(0.75 \ldots 2 . \ldots)^{4)} \\ & 2 \times(20 \ldots 16)^{4)} ; 2 \times(18 \ldots 14)^{4} ; 1 \times 12 \\ & \text { M3 } \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \mathrm{lb} . i n) \end{aligned}$
	Auxiliary conductors:		Cage Clamp terminals
	- Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.25 \ldots 2.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots .2 .5) \\ & 2 \times(24 \ldots 14) \end{aligned}$

For tools for opening Cage Clamp terminals see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
Maximum external diameter of the conductor insulation: 3.6 mm . For conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, "Accessories and Spare Parts".

1) If bars larger than $12 \times 10 \mathrm{~mm}$ are connected, a 3RT19 46-4EA1 terminal cover is needed to comply with the phase clearance.
2) If conductors larger than $25 \mathrm{~mm}^{2}$ are connected, a 3RT19 46-4EA1 terminal cover is needed to comply with the phase clearance.
3) Only with crimped cable lugs according to DIN 46234. Cable lug max. 20 mm wide.
4) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactors	Type Size		
General data			
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.			

${ }^{1)}$ For endurance of the main contacts see page $3 / 19$.
2) For conductor cross-sections see page $3 / 42$.
3) For electromagnetic compatibility (EMC) see page $3 / 12$.
${ }^{4)}$ Test conditions according to IEC 60947-4-1.

Contactors	Type Size		$\begin{aligned} & \text { 3RT10 } 5 . \\ & \text { S6 } \end{aligned}$
Control			
Operating range of the solenoid AC/DC (UC)			$0.8 \times U_{S} \min \ldots 1.1 \times U_{S}$ max
Power consumption of the solenoid (when coil is cool and rated range $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$)			
- Conventional operating mechanism			
- AC operation	Closing at U_{s} min Closing at U_{s} max Closed at U_{s} min Closed at U_{s} max	VA/p.f. VA/p.f. VA/p.f. VA/p.f.	$\begin{aligned} & 250 / 0.9 \\ & 300 / 0.9 \\ & 4.8 / 0.8 \\ & 5.8 / 0.8 \end{aligned}$
- DC operation	Closing at U_{S} min Closing at $U_{S \text { max }}$ Closed at $U_{\mathrm{s} \text { min }}$ Closed at U_{s} max	$\begin{aligned} & W \\ & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & 300 \\ & 360 \\ & 4.3 \\ & 5.2 \end{aligned}$
- Solid-state operating mechanism			
- AC operation	Closing at U_{s} min Closing at U_{s} max Closed at $U_{\mathrm{s} \text { min }}$ Closed at U_{s} max	VA/p.f. VA/p.f. VA/p.f. VA/p.f.	$\begin{aligned} & 190 / 0.8 \\ & 280 / 0.8 \\ & 3.5 / 0.5 \\ & 4.4 / 0.4 \end{aligned}$
- DC operation	Closing at U_{s} min Closing at U_{s} max Closed at U_{s} min Closed at U_{S} max	$\begin{aligned} & W \\ & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & 250 \\ & 320 \\ & 2.3 \\ & 2.8 \\ & \hline \end{aligned}$
PLC control input (EN 61131-2/type 2)			$24 \mathrm{VDC} / \leq 30 \mathrm{~mA}$ power consumption, (operating range $17 \ldots 30 \mathrm{~V}$ DC)
Operating times (Total break time = Opening delay + Arcing time) - Conventional operating mechanism			
- With $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$	Closing delay Opening delay	ms ms	$\begin{aligned} & 20 \ldots 95 \\ & 40 \ldots 60 \end{aligned}$
- With $U_{\text {s min }} \ldots U_{\text {s max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 25 \ldots 50 \\ & 40 \ldots 60 \end{aligned}$
- Solid-state operating mechanism, actuated via PLC input			
- With $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 75 \\ & 80 \ldots 90 \end{aligned}$
- With $U_{s \text { min }} \ldots U_{s}$ max	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 40 \ldots 60 \\ & 80 \ldots 90 \end{aligned}$
- Solid-state operating mechanism, actuated via A1/A2			
- With $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 95 \ldots 135 \\ & 80 \ldots 90 \end{aligned}$
- With $U_{\text {s min }} \ldots U_{\text {s max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 100 \ldots 120 \\ & 80 \ldots 90 \end{aligned}$
- Arcing time		ms	$10 . . .15$

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

For deviating inrush current factors x , the power must be recalculated as follows: $P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$

Utilization category AC-6b

Switching low-inductance (low-loss, metallized dielectric) AC capacitors
Ambient temperature $40^{\circ} \mathrm{C}$

- Rated operational currents I_{e}
- Rated power for single capacitors or

Up to $500 \mathrm{~V} \quad \mathrm{~A}$ banks of capacitors (minimum inductance of $6 \mu \mathrm{H}$ between capacitors connected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$
400 V kvar 72

$400 ~ V$	kvar	72	86
500	100		

500 V	kvar	90	108
690	125		

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions see
"Protection Equipment --> Overload Relays"

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

For tools for opening Cage Clamp terminals see Catalog LV 1, Chapter 3, Accessories and Spare Parts.
Maximum external diameter of the conductor insulation: 3.6 mm .
For conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, "Accessories and Spare Parts".

1) When connecting cable lugs to DIN 46235, use 3RT19 56-4EA1 terminal cover for conductor cross-sections from $95 \mathrm{~mm}^{2}$ to ensure phase spacing
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

Contactors	Type Size		
General data			
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.			

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactors	Type Size		$\begin{aligned} & \text { 3RT10 } 64 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 65 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 66 \\ & \text { S10 } \end{aligned}$	
Control						
Operating range of the solenoid AC/DC (UC)			$0.8 \times U_{S}$ min $\ldots 1.1 \times U_{S \text { max }}$			
Power consumption of the solenoid (when coil is cool and rated range U_{S} min $\ldots U_{S} \max$)						
- Conventional operating mechanism						
- AC operation	Closing at $U_{\text {s min }}$ Closing at U_{S} max Closed at U_{S} min Closed at U_{s} max	VA/p.f. VA/p.f. VA/p.f. VA/p.f.	$\begin{aligned} & 490 / 0.9 \\ & 590 / 0.9 \\ & 5.6 / 0.9 \\ & 6.7 / 0.9 \end{aligned}$			
- DC operation	Closing at $U_{s \text { min }}$ Closing at U_{s} max Closed at $U_{s \text { min }}$ Closed at U_{S} max	$\begin{aligned} & W \\ & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & 540 \\ & 650 \\ & 6.1 \\ & 7.4 \end{aligned}$			
- Solid-state operating mechanism						
- AC operation	Closing at $U_{\mathrm{s} \text { min }}$ Closing at U_{s} max Closed at U_{s} min Closed at U_{S} max	VA/p.f. VA/p.f. VA/p.f. VA/p.f.	$\begin{aligned} & 400 / 0.8 \\ & 530 / 0.8 \\ & 4 / 0.5 \\ & 5 / 0.4 \end{aligned}$			
- DC operation	Closing at $U_{\text {s min }}$ Closing at $U_{s \text { max }}$ Closed at $U_{\mathrm{s} \text { min }}$ Closed at $U_{\mathrm{S} \text { max }}$	$\begin{aligned} & W \\ & W \\ & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & 440 \\ & 580 \\ & 3.2 \\ & 3.8 \end{aligned}$			
PLC control input (EN 61131-2/type 2)			$24 \mathrm{~V} \mathrm{DC/} \mathrm{\leq} 30 \mathrm{~mA}$ power consumption, (operating range $17 \ldots 30 \mathrm{~V}$ DC)			
Operating times (Total break time $=$ Opening delay + Arcing time) - Conventional operating mechanism						
- With $0.8 \times U_{s \min } \ldots 1.1 \times U_{s}$ max	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 30 \ldots 95 \\ & 40 \ldots 80 \end{aligned}$			
- For $U_{\text {s min }} \ldots U_{\text {s max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 50 \\ & 50 \ldots 80 \end{aligned}$			
- Solid-state operating mechanism, actuated via A1/A2						
- With $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{s \text { max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 105 \ldots 145 \\ & 80 \ldots 100 \end{aligned}$			
- For $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 110 \ldots 130 \\ & 80 \ldots 100 \end{aligned}$			
- Solid-state operating mechanism, actuated via PLC input						
- With $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{s \text { max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 45 \ldots 80 \\ & 80 \ldots 100 \end{aligned}$			
- For $U_{\mathrm{S} \text { min }} \ldots U_{\mathrm{S} \text { max }}$	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 50 \ldots 65 \\ & 80 \ldots 100 \end{aligned}$			
- Arcing time		ms	$10 . . .15$			

Contactors $\begin{array}{ll}\text { Type } \\ \text { Size }\end{array}$			$\begin{aligned} & \text { 3RT10 } 64 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 65 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 66 \\ & \text { S10 } \end{aligned}$
Main circuit					
AC capacity					
Utilization category AC-1 Switching resistive loads					
- Rated operational currents I_{e}	At $40^{\circ} \mathrm{C}$ up to 690 V At $60^{\circ} \mathrm{C}$ up to 690 V At $60^{\circ} \mathrm{C}$ up to 1000 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 275 \\ & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & 330 \\ & 300 \\ & 150 \end{aligned}$	
- Rated power for AC loads ${ }^{1)}$ P.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	kW kW kW kW kW	$\begin{aligned} & 94 \\ & 164 \\ & 205 \\ & 283 \\ & 164 \end{aligned}$	$\begin{aligned} & 113 \\ & 197 \\ & 246 \\ & 340 \\ & 246 \end{aligned}$	
- Minimum conductor cross-section for loads with I_{e}	$\begin{aligned} & \text { At } 40^{\circ} \mathrm{C} \\ & \text { At } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 150 \\ & 120 \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	
Utilization category AC-2 and AC-3					
- Rated operational currents I_{e}	$\begin{array}{r} \text { Up to } 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 225 \\ & 225 \\ & 68 \end{aligned}$	$\begin{aligned} & 265 \\ & 265 \\ & 95 \end{aligned}$	$\begin{aligned} & 300 \\ & 280 \\ & 95 \end{aligned}$
- Rated power of slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 73 \\ & 128 \\ & 160 \\ & 223 \\ & 90 \end{aligned}$	$\begin{aligned} & 85 \\ & 151 \\ & 189 \\ & 265 \\ & 132 \end{aligned}$	$\begin{aligned} & 97 \\ & 171 \\ & 215 \\ & 280 \\ & 132 \\ & \hline \end{aligned}$
Thermal load capacity	10 s current ${ }^{2}$)	A	1800	2400	2400
Power loss per main current path	At $I_{\mathrm{e}} / \mathrm{AC}-3 / 500 \mathrm{~V}$	W	17	18	22
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$) - Rated operational current I_{e} - Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \\ \text { At } 400 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 195 \\ & 110 \end{aligned}$	$\begin{aligned} & 230 \\ & 132 \end{aligned}$	$\begin{aligned} & 280 \\ & 160 \end{aligned}$
- The following applies to a contact endurance of about 200000 operating cycles:					
- Rated operational currents I_{e}	$\begin{array}{r} \text { Up to } 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 96 \\ & 85 \\ & 42 \end{aligned}$	$\begin{aligned} & 117 \\ & 105 \\ & 57 \end{aligned}$	$\begin{aligned} & 125 \\ & 115 \\ & 57 \end{aligned}$
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 30 \\ & 54 \\ & 67 \\ & 82 \\ & 59 \end{aligned}$	$\begin{aligned} & 37 \\ & 66 \\ & 82 \\ & 102 \\ & 80 \end{aligned}$	$\begin{aligned} & 40 \\ & 71 \\ & 87 \\ & 112 \\ & 80 \end{aligned}$

Utilization category AC-6a switching AC transformers

- Rated operational current I_{e}
- For inrush current $\mathrm{n}=20$

Up to 690 V	A	227	265	273
Up to 690 V	A	151	182	182
At 230 V	kVA	90	105	109
400 V	kVA	157	183	189
500 V	kVA	196	229	236
690 V	kVA	271	164	326
1000 V	kVA	117	72	164
At 230 V	kVA	60	126	72
400 V	kVA	105	158	126
500 V	kVA	130	217	158
690 V	KVA	180	164	217
1000 V	kVA	117		164

For deviating inrush current factors x, the power must be recalculated as follows: $P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$

Utilization category AC-6b

Switching low-inductance (low-loss, metallized dielectric) AC capacitors
Ambient temperature $40^{\circ} \mathrm{C}$

- Rated operational currents I_{e}
- Rated power for single capacitors or Up to $500 \mathrm{~V} \quad \mathrm{~A}$

183	220
73	88
127	152
159	191
127	152

88
400 V kvar 127152 nected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions see "Protection Equipment --> Overload Relays".

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Utilization category DC-3 and DC-5
Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)
-1 conducting path
-2 conducting paths in series
- 3 conducting paths in series

Up to 24 V	A	200	300
60 V	A	7.5	11
110 V	A	2.5	3
220 V	A	0.6	0.6
440 V	A	0.17	0.18
600 V	A	0.12	0.125
Up to 24 V	A	200	300
60 V	A	200	300
110 V	A	200	300
220 V	A	2.5	2.5
440 V	A	0.65	0.65
600 V	A	0.37	0.37
Up to 24 V	A	200	300
60 V	A	200	300
110 V	A	200	300
220 V	A	200	300
440 V	A	1.4	1.4
600 V	A	0.75	0.75

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

- Contactors without overload relays	No-load switching frequency	h^{-1}	2000	2000	2000
Dependence of the switching fre-	AC-1	h^{-1}	750	800	750
quency z^{\prime} on the operational current	AC-2	h^{-1}	250	300	250
I^{\prime} and operational voltage U^{\prime} :	AC-3	h^{-1}	500	700	500
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$	AC-4	h^{-1}	130	130	130
- Contactors with overload relays (mea		h^{-1}	60	60	60

- Contactors with overload relays (mean value)

For tools for opening Cage Clamp terminals see Catalog LV 1,
Chapter 3, Accessories and Spare Parts.
Maximum external diameter of the conductor insulation: 3.6 mm .
For conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, "Accessories and Spare Parts".

1) When connecting cable lugs to DIN 46234, the 3RT19 66-4EA1 terminal cover must be used for conductor cross-sections of $240 \mathrm{~mm}^{2}$ and more as well as DIN 46235 for conductor cross-sections of $185 \mathrm{~mm}^{2}$ and more to keep the phase clearance.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

3RT10 contactors, 3-pole, 3 ... 250 kW

| Contactors | Type | |
| :--- | :--- | :--- | :--- |
| General data | | |
| Permissible mounting position | | |
| The contactors are designed for operation on a vertical mounting surface. | | |

3RT10 contactors, 3-pole, 3 ... 250 kW

| Contactors | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up taken into account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions see
"Protection Equipment --> Overload Relays"

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactors	Type		
	Size		

For tools for opening Cage Clamp terminals see Catalog LV 1 , Chapter 3, Accessories and Spare Parts.
Maximum external diameter of the conductor insulation: 3.6 mm . For conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation stop" must be used, see Catalog LV 1, Chapter 3, "Accessories and Spare Parts".

1) When connecting cable lugs according to DIN 46234 for conductor crosssections of $185 \mathrm{~mm}^{2}$ and more and according to DIN 46235 for conductor cross-sections of $240 \mathrm{~mm}^{2}$ and more, the 3RT19 66-4EA1 terminal cover must be used more to keep the phase clearance.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

Contactors	Type Size	$\begin{aligned} & \text { 3RT10 } 34 \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 35 \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 36 \\ & \text { S2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 44 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 45 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 46 \\ & \text { S3 } \end{aligned}$
(13) and (1) ratings							
Rated insulation voltage	V AC	600			600		
Uninterrupted current, at $40^{\circ} \mathrm{C}$	- Open and enclosed A	45	55	50	90	105	105
Maximum horsepower ratings (®1) and (1L) approved values)							
- Rated power for induction motors at 60 Hz	At 200 V hp 230 V hp 460 V hp 575 V hp	$\begin{aligned} & 10 \\ & 10 \\ & 25 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 75 \\ & 100 \end{aligned}$
Short-circuit protection ${ }^{1)}$ (contactor or overload relay)	- CLASS RK5 fuse At 600 V kA - Circuit breakers with overload pro- A tection acc. to UL 489	$\begin{aligned} & 5 \\ & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 5 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 10 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 10 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 10 \\ & 350 \\ & 400 \end{aligned}$
- Combination motor controllers type E acc. to UL 508							
	$\begin{array}{ll} \text { - At } 480 \mathrm{~V} & \text { Type } \\ & \text { A } \\ & \text { kA } \end{array}$	$\begin{aligned} & \text { 3RV10 } 3 \\ & 32 \\ & 65 \end{aligned}$	$\begin{aligned} & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 50 \\ & 65 \end{aligned}$	$\begin{aligned} & \text { 3RV10 } 4 \\ & 63 \\ & 65 \end{aligned}$	$\begin{aligned} & 75 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 65 \end{aligned}$
	- At 600 V	$\begin{aligned} & \text { 3RV10 } 4 \\ & 32 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { 3RV10 } 4 \\ & 63 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & \hline \end{aligned}$
NEMA/EEMAC ratings							
NEMA/EEMAC size	hp	--		2	--		3
- Uninterrupted current	- Open A - Enclosed A	--		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	--		$\begin{aligned} & 90 \\ & 90 \end{aligned}$
- Rated power for induction motors with 60 Hz	At 200 V hp 230 V hp 460 V hp 575 V hp	-- -- -- -		$\begin{aligned} & 10 \\ & 15 \\ & 25 \\ & 25 \end{aligned}$	--		$\begin{aligned} & 25 \\ & 30 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$
Overload relay	- Type - Setting range	$\begin{aligned} & \hline \text { 3RU113 } \\ & 5.5 \ldots 50 \end{aligned}$			$\begin{aligned} & \hline \text { 3RU114 } \\ & 18 \ldots 100 \end{aligned}$		

${ }^{1)}$ For more information about short-circuit values, e. g. for protection against short-circuit currents, see the UL guides (Order No.: A5E02118883 for the individual devices.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT10 contactors, 3-pole, 3 ... 250 kW

1) For more information about short-circuit values, e. g. for protection against short-circuit currents, see the UL guide (Order No.: A5E02118883 for German) or UL reports (http://www.siemens.com/lowvoltage/support) for the individual devices.

Overview

-3RT12 vacuum contactors for switching motors

Operating mechanism types

Two types of solenoid operation are available:

- Conventional operating mechanism, version 3RT12..-. \underline{A}
- Solid-state operating mechanism, version 3RT12..-- \underline{N}

UC operation

The contactors can be operated with AC (40 to 60 Hz) as well as with DC.

Withdrawable coils

For simple coil replacement, e. g. if the application is replaced, the magnetic coil can be pulled out upwards after the release mechanism has been actuated and can be replaced by any other coil of the same size.

Auxiliary contact complement

The contactors can be fitted with up to 8 lateral auxiliary contacts (identical auxiliary switch blocks from S0 to S12). Of these, no more than 4 are permitted to be NC contacts.

Function

3RT12 vacuum contactors

In contrast with the 3RT10 contactors - the main contacts operate in air under atmospheric conditions - the contact gaps of the 3RT12 vacuum contactors are contained in hermetically enclosed vacuum contact tubes. Neither arcs nor arcing gases are produced. The particular benefit of 3RT12 vacuum contactors, however, is that their electrical endurance is at least twice as long as that of 3RT10 contactors. They are therefore particularly well suited to frequent switching in jogging/mixed operation, for example in crane control systems.

Advantages:

- Very long electrical endurance
- High short-time loading capacity for heavy starting
- No reduction of rated operational currents up to 1000 V
- No open arcs, no arcing gases, i. e. no minimum clearances from grounded parts required either
- Longer maintenance intervals
- Increased plant availability

Notes on operation.

- Switching motors with operational voltages $U_{e}>500 \mathrm{~V}$: To damp overvoltages and protect the motor coil insulation against reignition when switching off induction motors, it is recommended to connect the 3RT19 66-1PV surge suppression module - RC varistor - to the outgoing side (2/T1, 4/T2, 6/T3) of the contactors (accessory). This additional equipment is not required for use in circuits with converters. It could be destroyed by the voltage peaks and harmonics which are generated.
- Switching DC voltage:

Vacuum contactors are basically unsuitable for switching DC voltage.

Contactors with conventional operating mechanism

3RT1...-. A version:

The magnetic coil is switched directly on and off with the control supply voltage U_{s} by way of terminals A1/A2.

Multi-voltage range for the control supply voltage U_{S} :
Several closely adjacent control supply voltages, available around the world, are covered by just one coil, for example 110-115-120-127 V AC/DC or 220-230-240 V AC/DC.
In addition, allowance is also made for a coil operating range of 0.8 times the lower ($U_{\mathrm{s} \text { min }}$) and 1.1 times the upper (U_{s} max $)$ rated control supply voltage within which the contactor switches reliably and no thermal overloading occurs.

Contactors with solid-state operating mechanism

The magnetic coil is supplied selectively with the power required for reliable switching and holding by upstream control electronics.

- Wide voltage range for the control supply voltage U_{s} : Compared with the conventional operating mechanism, the solid-state operating mechanism covers an even broader range of control supply voltages used worldwide within one coil variant. For example, the coil for 200 to 277 V UC ($U_{\text {s }} \min$ to $\left.U_{s \text { max }}\right)$ covers the voltages 200-208-220-230-240-254-277 V used worldwide.
- Extended operating range 0.7 to $1.25 \times U_{s}$

The wide range of the rated control supply voltage and the additional coil operating range of $0.8 \times U_{\text {s min }}$ to $1.1 \times U_{S}$ max results in an extended coil tolerance of at least 0.7 to $1.25 \times U_{\mathrm{s}}$ for the most common control supply voltages 24,110 and 230 V for which the contactors operate reliably.

- Bridging temporary voltage dips:

Control voltage failures dipping to 0 V (at A1/A2) are bridged for up to approx. 25 ms to avoid unintentional tripping.

- Defined ON and OFF thresholds:

For voltages of $\geq 0.8 \times U_{s}$ min and higher, the electronics will reliably switch the contactors on and off $\leq 0.5 \times U_{\mathrm{s} \text { min }}$. The hysteresis in the switching thresholds prevents the main contacts from chattering as well as increased wear or welding when operated in weak, unstable networks. This also prevents thermal overloading of the contactor coil if the voltage applied is too low (contactor does not close properly and is continuously operated with overexcitation).

- Low control power consumption when closing and in the closed state.

Electromagnetic compatibility (EMC)

The contactors with solid-state operating mechanism conform to the requirements for operation in industrial plants.

- Interference immunity
- Burst (IEC 61000-4-4): 4 kV
- Surge (IEC 61000-4-5): 4 kV
- Electrostatic discharge, ESD (IEC 61000-4-2): $8 / 15$ kV
- Electromagnetic field (IEC 61000-4-3): 10 V/m
- Emitted interference
- Limit value class A according to EN 55011

Note.
In connection with converters, the control cables must be routed separately from the load cables to the converter.

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

3RT1...-. N version: for 24 V DC PLC output

2 control options:

- Control without a coupling link directly through a 24 V DC/ $\geq 30 \mathrm{~mA}$ PLC output (EN 61131-2). Connection by means of 2-pole plug-in connection. The screwless springtype connection is part of the scope of supply. The control supply voltage which supplies the solenoid operating mechanism must be connected to A1/A2.
Note: Before start-up, the slide switch for PLC operation must be moved to the "PLC ON" position (setting ex works: "PLC OFF").

(1) Slide switch must be in "PLC ON" position
(2) Plug-in connection, 2-pole
(3) Emergency shutdown - optional

Vacuum contactors S10 and S12 contact erosion indication

If the contact erosion indicator on the contactor head part indicates an excessive erosion of the vacuum contact tubes (indicating line is on level with the tool symbol), the tubes must be replaced.
To ensure greater reliability, it is recommended to replace all 3 contact tubes.

- Conventional control by applying the control supply voltage at A1/A2 through a switching contact.
Note:
The slide switch must be in the "PLC OFF" position (= setting ex works).

Technical specifications

Contactors	Type	3RT12 64	3RT12 65	3RT12 66
	Size	S10	S10	S10

General data
Permissible mounting position
The contactors are designed for operation on a vertical mounting surface.

Mechanical endurance	Oper- ating cycles	10 million
Electrical endurance		$1)$
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)	V	1000
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	8
Protective separation between the coil and the main contacts acc. to EN 60947-1, Appendix N	V	690
Mirror contacts A mirror contact is an auxiliary NC contact that cannot be closed simulta- neously with a NO main contact.		Yes, acc. to EN 60947-4-1, Appendix F
Permissible ambient temperature	\bullet During operation	

[^6]| Contactors $\begin{array}{ll}\text { Type } \\ & \text { Size }\end{array}$ | | $\begin{aligned} & \text { 3RT12 } 64 \\ & \text { S10 } \end{aligned}$ | $\begin{aligned} & \text { 3RT12 } 65 \\ & \text { S10 } \end{aligned}$ | $\begin{aligned} & \text { 3RT12 } 66 \\ & \text { S10 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Short-circuit protection | | | | |
| Main circuit
 Fuse links, gL/gG
 LV HRC 3NA, DIAZED 5SB, NEOZED 5SE | | | | |
| Auxiliary circuit
 - Fuse links gL/gG DIAZED 5SB, NEOZED 5SE (weld-free protection for $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) | A | 10 | | |
| - Or miniature circuit breakers with C characteristic (short-circuit current $I_{\mathrm{k}} 400 \mathrm{~A}$) | | | | |

${ }^{1)}$ Test conditions according to IEC 60947-4-1.

3RT, 3TB, 3TF Contactors for Switching Motors

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

Contactors	Type	3RT12 64	3RT12 65	3RT12 66
	Size	S10	S10	
Main circuit				
AC capacity				

Utilization category AC-1
Switching resistive loads

- Rated operational currents I_{e}
- Rated power for AC loads ${ }^{1)}$ P.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$

	500 V kW	246
	690 VW	340
	1000 V kW	492
- Minimum conductor cross-section for	At $40^{\circ} \mathrm{Cmm}^{2}$	185
loads with I_{C}	At $60^{\circ} \mathrm{C} \mathrm{mm}$	

Utilization category AC-2 and AC-3

- Rated operational currents I_{e}
- Rated power for slipring
or squirrel-cage motors at 50 and 60 Hz

or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} 400 \mathrm{~V} \mathrm{~kW} \\ 500 \mathrm{VW} \\ 690 \mathrm{~V} \mathrm{~kW} \\ 1000 \mathrm{~V} \mathrm{~kW} \end{array}$	$\begin{aligned} & 128 \\ & 160 \\ & 223 \\ & 320 \end{aligned}$	$\begin{aligned} & 151 \\ & 189 \\ & 265 \\ & 378 \end{aligned}$	$\begin{aligned} & 171 \\ & 215 \\ & 288 \\ & 428 \end{aligned}$
Thermal load capacity	10 s current ${ }^{2}$) A	1800	2120	2400
Power loss per conducting path	At $I_{\mathrm{e}} /$ AC-3 W	9	12	14
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$) - Rated operational current I_{e} - Rated power for squirrel-cage motors with 50 Hz and 60 Hz - The following applies to a contact endurance of about 200000 operating cycles:	Up to 690 V A At 400 V kW	$\begin{aligned} & 195 \\ & 110 \end{aligned}$	$\begin{aligned} & 230 \\ & 132 \end{aligned}$	$\begin{aligned} & 280 \\ & 160 \end{aligned}$
- Rated operational currents I_{e}	Up to 690 V A 1000 V A	$\begin{aligned} & 97 \\ & 68 \end{aligned}$	$\begin{aligned} & 115 \\ & 81 \end{aligned}$	$\begin{aligned} & 140 \\ & 98 \end{aligned}$
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	At 230 V kW 400 V kW 500 V kW 690 V kW 1000 V kW	$\begin{aligned} & 30 \\ & 55 \\ & 68 \\ & 94 \\ & 95 \end{aligned}$	$\begin{aligned} & 37 \\ & 65 \\ & 81 \\ & 112 \\ & 114 \end{aligned}$	$\begin{aligned} & 45 \\ & 79 \\ & 98 \\ & 138 \\ & 140 \end{aligned}$

Utilization category AC-6a

Switching AC transformers

Rated operational current I_{e}

- For inrush current $\mathrm{n}=20$
\longrightarrow
Up to 690 V A 278

Rating P

- For inrush current $\mathrm{n}=20$

At 230 V kVA	111
400 V kVA	193
500 V kVA	241
690 V kVA	332
1000 V kVA	482
At 230 V kVA	74
400 V kVA	128
500 kVA	160
690 V kVA	221
1000 V kVA	320

For deviating inrush current factors x, the power must be
Irecalculated as follows: $P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$

Utilization category AC-6b

Switching low-inductance (low-loss, metallized dielectric) AC capacitors
Ambient temperature $40^{\circ} \mathrm{C}$

- Rated operational currents I_{e}
- Rated power for single capacitors or banks of capacitors (minimum inductance of $6 \mu \mathrm{H}$ between capacitors connected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and
- For inrush current $\mathrm{n}=30$

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

- Contactors without overload relays No-load switching frea
Dependence of the switching frequency
Z^{\prime} on the operational current I^{\prime} and
operational voltage $U^{\prime}:$
$Z^{\prime}=Z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$
- Contactors with overload relays (mean value)

1) Industrial furnaces and electric heaters with resistance heating, etc.
(increased power consumption on heating up taken into account).

uency h^{-1}	2000	2000
AC-1 h^{-1}	800	750
AC-2 h^{-1}	300	250
AC-3 h^{-1}	750	750
AC-4 h^{-1}	250	250
h^{-1}	60	60

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up taken into account).
2) According to IEC 60947-4-1

For rated values for various start-up conditions see "Protection Equipment --> Overload Relays"

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

Contactors	Type Size		

1) When connecting cable lugs according to DIN 46234 for conductor crosssections of $185 \mathrm{~mm}^{2}$ and more and according to DIN 46235 for conductor cross-sections of $240 \mathrm{~mm}^{2}$ and more, the 3RT19 66-4EA1 terminal cover must be used more to keep the phase clearance.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

$\begin{array}{ll}\text { Contactors } & \begin{array}{l}\text { Type } \\ \text { Size }\end{array}\end{array}$		$\begin{aligned} & \text { 3RT12 } 75 \\ & \text { S12 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 76 \\ & \text { S12 } \end{aligned}$
General data			
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.			
Mechanical endurance	Operating cycles	10 million	
Electrical endurance		1)	
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)	V	1000	
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	8	
Protective separation between the coil and the main contacts acc. to EN 60947-1, Appendix N	V	690	
Mirror contacts A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with a NO main contact.		Yes, acc. to EN 60947-4-1, Appen	
Permissible ambient temperature - During operation • During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	```-25 ... +60/+55 with AS-Interface -55 ... +80```	
Degree of protection acc. to EN 60947-1, Appendix C Touch protection acc. to EN 50274		IP00/open, coil assembly IP20 Finger-safe with cover	
Shock resistance - Rectangular pulse - Sine pulse	g / ms g / ms	8.5/5 and 4.2/10 $13.4 / 5$ and $6.5 / 10$	
Conductor cross-sections		2)	
Electromagnetic compatibility (EMC)		3)	
Short-circuit protection			
Main circuit Fuse links, gL/gG LV HRC 3NA, DIAZED 5SB, NEOZED 5SE			
Auxiliary circuit			
- Fuse links gL/gG DIAZED 5SB, NEOZED 5SE (weld-free protection for $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) - Or miniature circuit breakers with C characteristic (short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)	A	10	
1) See endurance of the main contacts on page $3 / 19$. 2) See conductor cross-sections on page $3 / 63$. 3) See Electromagnetic Compatibility (EMC) on page $3 / 12$. 4) Test conditions according to IEC 60947-4-1.			

| Contactors | Type | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up taken into account).
${ }^{2)}$ According to IEC 60947-4-1.
For rated values for various start-up conditions
see "Protection Equipment --> Overload Relays".

3RT, 3TB, 3TF Contactors for Switching Motors

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

3RT12 vacuum contactors, 3-pole, 110 ... 250 kW

[^7] UL reports (http://www.siemens.com/lowvoltage/support) for the individual devices.

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

Overview

IEC 60947-4-1, EN 60947-4-1 (VDE 0660 Part 102)
The 3TF68/69 contactors are climate-proof. They are finger-safe according to EN 50274. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices (see Accessories and Spare Parts).

Function

Main contacts

Contact erosion indication with 3TF68/69 vacuum contactors
The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base. If the distance indicated by one of the double slides is $<0.5 \mathrm{~mm}$ while the contactor is in the closed position, the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all 3 vacuum interrupters.

Auxiliary contacts

Contact reliability
The auxiliary contacts are suitable for solid-state circuits

- With currents $\geq 1 \mathrm{~mA}$
- And voltages from 17 V .

Surge suppression
Control circuit
Protection of coils against overvoltages:
AC operation

- Fitted with varistors as standard

DC operation
Retrofitting options:

- With varistors

If TF68/TF69 is to be used for DC operation, an additional reversing contactor is required; this is included in the scope of supply in the same packaging as the vacuum contactor.

Electromagnetic compatibility

3TF68/69..-.C contactors for AC operation are fitted with an electronically controlled solenoid operating mechanism with a high interference immunity.

Contactor type	Rated control supply voltage $\boldsymbol{U}_{\mathrm{s}}$	Overvoltage type (IEC 60801)	Degree of severity (IEC 60801)	Overvoltage strength
$\begin{aligned} & \text { 3TF68 44-.C... } \\ & \text { 3TF69 44-.C.. } \end{aligned}$	$110 . .132 \mathrm{~V}$	Burst	3	2 kV
		Surge	4	6 kV
	$200 . .277$ V	Burst	4	4 kV
		Surge	4	5 kV
	380 ... 600 V	Burst	4	4 kV
		Surge	4	6 kV

Note:

During operation in installations in which the emitted interference limits cannot be observed, e. g. when used for output contactors in converters, 3TF68/69..-. Q contactors without a main conductor path circuit are recommended (see description below).

Application

The standard 3TF68..-.C and 3TF69..-.C contactors with electronically controlled contactor mechanism, have high resistance to electromagnetic interference.
The 3TF68..-. Q and 3TF69..-. Q contactors have been designed for use in installations in which the AC control supply voltage is subject to very high levels of interference.

Causes for such interference can be, for example:

- Frequency converters which are operated nearby can cause periodic overvoltages at the control level of the contactors.
- High-energy pulses cause by switching operations and atmospheric discharges can cause interference on the control cables.

To reduce interference voltages caused by frequency converters, the manufacturer recommends the use of e. g. input filters, output filters, grounding or shielding in the installation.
Further measures that should be applied for overvoltage damping:

- Feeding the contactors using control transformer according to EN 60204 - rather than directly from the network
- Use of surge arresters, if required

For operating conditions where there are high interference voltages and no measures that reduce interference voltage coupling to the control voltage level have been taken, use of 3TF68..-. Q and 3TF69.--. Q contactors is highly recommended.

Version

The magnetic systems of the 3TF68..-. Q and 3TF69..-. Q contactors for AC operation are equipped with rectifiers for DC economy circuit.
A 3TC44 reversing contactor with a mounted series resistor is used to switch to the holding excitation.
The reversing contactor can be fitted separately. The reversing contactors is connected to the 3TF6 main contactor by means of a one-meter connecting cable with plug-in connectors (see page 3/239).

Connection

Control circuit

The rectifier bridge is connected to varistors for protection against overvoltages. The built-in rectifier bridge affords sufficient protection for the coils.

Main circuit

As standard 3TF6 contactors with integrated RC varistors.

Protection of the main current paths

An integrated RC varistor connection for the main current paths of the contactors dampens the switching overvoltage rises to safe values. This prevents multiple restriking.
The operator of an installation can therefore rest assured that the motor winding cannot be damaged by switching overvoltages with steep voltage rises.

Note:
The overvoltage damping circuit is not required if
3TF68/69 contactors are used in circuits with DC choppers, frequency converters or speed-variable operating mechanisms, for example. It could be damaged by the voltage peaks and harmonics which are generated. This may cause phase-to-phase short-circuits in the contactors.
Solution: Order special contactor version without overvoltage damping. The Order No. must include "-Z" and the order code "A02". Without additional price.

Technical specifications

Contactors Type			3TF68 and 3TF69
Rated data of the auxiliary contacts			Acc. to IEC 60947-5-1 (VDE 0660 Part 200)
Rated insulation voltage U_{i} (degree of pollution 3)		V	690
Continuous thermal current $I_{\text {th }}=$ Rated operational current $I_{\mathrm{e}} /$ AC-12		A	10
AC load Rated operational current $I_{\mathrm{e}} / \mathbf{A C}-15 / \mathbf{A C}-14$ - For rated operational voltage U_{e}			
	$\begin{aligned} & 24 \mathrm{~V} \\ & 110 \mathrm{~V} \\ & 125 \mathrm{~V} \\ & 220 \mathrm{~V} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 6 \\ & 5.6 \end{aligned}$
	$\begin{aligned} & 380 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4 \\ & 3.6 \\ & 2.5 \\ & 2.5 \\ & 2.3 \end{aligned}$
DC load Rated operational current $I_{e} /$ DC-12 - For rated operational voltage $U_{\text {e }}$			
	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 3.2 \\ & 2.5 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 0.9 \\ & 0.33 \\ & 0.22 \\ & \hline \end{aligned}$
Rated operational current $I_{e} /$ DC-13 - For rated operational voltage U_{e}			
	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 5 \\ & 1.14 \\ & 0.98 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.13 \\ & 0.07 \end{aligned}$
(13 and (11) ratings of the auxiliary contacts			
Rated voltage		$\begin{aligned} & \text { V AC, } \\ & \text { max. } \end{aligned}$	600
Switching capacity			A 600, P 600

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

Endurance of the auxiliary contacts

The contact endurance for utilization category AC-12 or AC-15/AC-14 depends mainly on the breaking current. It is assumed that the operating mechanisms are switched randomly, i. e. not synchronized with the phase angle of the supply system.

Contact erosion indication with 3TF68 and 3TF69 vacuum contactors

The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base.

3TF68 and 3TF69 contactors at 230 V AC

Endurance of the main contacts

Contactor Type

3TF68 and 3TF69 contactors
Diagram legend:
$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

| Contactors | Type | |
| :--- | :--- | :--- | :--- |
| Size | | |

1) To easily replace the laterally mounted auxiliary switches it is recommended to maintain a minimum distance of 30 mm between the contactors.
2) If mounted at a 90° angle (conducting paths are horizontally above each other), the switching frequency is reduced by 80% compared with the normal values.
3) See "Endurance of the Auxiliary Contacts".
${ }^{4)}$ Test conditions according to IEC 60947-4-1.

3RT, 3TB, 3TF Contactors for Switching Motors

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

Contactors	Type Size		$\begin{aligned} & \text { 3TF68 } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { 3TF69 } \\ & 14 \end{aligned}$
Control				
Magnetic coil operating range			$0.8 \times U_{S}$ min $\ldots 1.1 \times U_{S}$ max	
Power consumption of the magnetic coils (when coil is cold and $1.0 \times U_{s}$)				
- AC operation, $U_{s} \max$	- Closing - Closed	VA/p.f VA/p.f	$\begin{aligned} & 1850 / 1 \\ & 49 / 0.15 \end{aligned}$	$\begin{aligned} & 950 / 0.98 \\ & 30.6 / 0.31 \end{aligned}$
- AC operation, $U_{\text {s min }}$	- Closing - Closed	VA/p.f. VA/p.f	$\begin{aligned} & 1200 / 1 \\ & 13.5 / 0.47 \end{aligned}$	$\begin{aligned} & \text { 600/0.98 } \\ & 12.9 / 0.43 \end{aligned}$
- DC economy circuit ${ }^{11}$	- Closing at 24 V - Closed	$\begin{aligned} & W \\ & W \end{aligned}$	$\begin{aligned} & 1010 \\ & 28 \end{aligned}$	$\begin{aligned} & 960 \\ & 20.6 \end{aligned}$
For contactors of type 3TF68/69:- $\mathbf{-}$:				
- AC operation, $U_{\text {s min }}{ }^{2)}$	- Closing - Closed	VA/p.f. VA/p.f	$\begin{aligned} & 1000 / 0.99 \\ & 11 / 1 \end{aligned}$	$\begin{aligned} & 1150 / 0.99 \\ & 11 / 1 \\ & \hline \end{aligned}$
Operating times at $0.8 \ldots 1.1 \times U_{\text {s }}$ (Total break time $=$ Opening delay + Arcing time)			(Values apply to cold and warm coil)	
- AC operation	- Closing delay - Opening delay	ms ms	$\begin{aligned} & \left.70 \ldots 120(22 \ldots 65)^{3}\right) \\ & 70 \ldots 100 \end{aligned}$	$\begin{aligned} & 80 \ldots 120 \\ & 70 \ldots 80 \end{aligned}$
- DC economy circuit	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 76 \ldots 110 \\ & 50 \end{aligned}$	$\begin{aligned} & 86 \ldots 280 \\ & 19 \ldots 25 \end{aligned}$
- Arcing time		ms	$10 . .15$	10
For contactors of type 3TF68/69.-. \mathbf{Q} :				
- AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 90 \\ & 65 \ldots 90 \end{aligned}$	$\begin{aligned} & 45 \ldots 160 \\ & 30 \ldots 80 \end{aligned}$
Operating times at $1.0 \times \boldsymbol{U}_{\text {s }}$ (Total break time $=$ Opening delay + Arcing time)				
- AC operation	- Closing delay - Opening delay	ms ms	$\begin{aligned} & \left.80 \ldots 100(30 \ldots 45)^{3}\right) \\ & 70 \ldots 100 \end{aligned}$	$\begin{aligned} & 85 \ldots 100 \\ & 70 \end{aligned}$
- DC economy circuit	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 80 \ldots 90 \\ & 50 \end{aligned}$	$\begin{aligned} & 90 \ldots 125 \\ & 19 \ldots 25 \end{aligned}$
Minimum command duration for closing	Standard Reduced make-time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 120 \\ & 90 \\ & \hline \end{aligned}$	120
Minimum interval time between two ON commands		ms	100	300
1) At $24 \vee D C$; for further voltages, deviations of up to $\pm 10 \%$ are possible. 2) Including reversing contactor. 3) Values in brackets apply to contactors with reduced operating times.				

Utilization category AC-6b,

switching low-inductance (low-loss, metallized dielectric)
AC capacitors

- Rated operational currents I_{e}
- Rated power for single capacitors at 50 and 60 Hz
- Rated power for banks of capacitors (minimum inductance is $6 \mu \mathrm{H}$ between capacitors connected in parallel) at 50 and 60 Hz

Up to 400 V	A	433
At 230 V	kvar	175
400 V	kvar	300
500 V	kvar	400
690 V	kvar	300
At 230 V	kvar	145
400 V	kvar	250
500 V	kvar	333
690 V	kvar	250

1) Max. permissible rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4=I_{\mathrm{e}} / \mathrm{AC}-3$ up to 500 V , for reduced contact endurance and reduced switching frequency.
2) For deviating inrush current factors x, the power must be recalculated as follows:
$P_{\mathrm{x}}=P_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$.

3RT, 3TB, 3TF Contactors for Switching Motors

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

For short-circuit protection with overload relays see "Protection
Equipment --> Overload Relays"

1) According to IEC 60947-4-1.
2) See Accessories and Spare Parts.
3) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

Overview
3TB5 contactors with DC solenoid system,
3-pole, 55 ... 200 kW
EN 60947-4-1.
The contactors are climate-proof and finger-safe according to EN 50274 .

Technical specifications

Contactors Type			3 3650	3 TB52 to 3TB56
Rated data of the auxiliary contacts			Acc. to IEC 60947-5-1 (VDE 0660 Part 200)	
Rated insulation voltage U_{i} (degree of pollution 3)		V	690	
Continuous thermal current $I_{\text {th }}=$ Rated operational current $I_{\mathrm{e}} /$ AC-12		A	10	
AC load Rated operational current $I_{\mathrm{e}} / \mathrm{AC}$-15/AC-14 - For rated operational voltage U_{e}				
	$\begin{array}{r} 24 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \\ 220 \mathrm{~V} \\ 230 \mathrm{~V} \end{array}$	A A A A A	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 6 \\ & 5.6 \end{aligned}$	
	$\begin{aligned} & 380 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	A A A A A	$\begin{aligned} & 4 \\ & 3.6 \\ & 2.5 \\ & 2.5 \\ & -- \end{aligned}$	

DC load

Rated operational current $I_{\mathrm{e}} /$ DC-12

- For rated operational voltage U_{e}

24 V	A	10	10
60 V	A	10	10
110 V	A	3.2	8
125 V	A	2.5	6
220 V	A	0.9	2
440 V	A	0.33	0.6
600 V	A	0.22	0.4

Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-13^{1)}$

- For rated operational voltage U_{e}

24 V	A	$10(10)$	$10(10)$
60 V	A	$5(7)$	$5(4)$
110 V	A	$1.14(3.2)$	$2.4(1.8)$
125 V	A	$0.98(2.5)$	$2.1(1.6)$
220 V	A	$0.48(0.9)$	$1.1(0.9)$
440 V	A	$0.13(0.33)$	$0.32(0.27)$
600 V	A	$0.075(0.22)$	$0.21(0.18)$

Contactors	Type	3TB50 to 3TB56
(2) and (1) ratings of the auxiliary contacts	V AC,	600
Rated voltage	max.	
Switching capacity	A 600, P 600	
1) Values in brackets apply to auxiliary contacts with delayed NC contact.		

3TB5 contactors with DC solenoid system,

3-pole, 55 ... 200 kW

Endurance of the main contacts

The characteristic curves show the contact endurance of the contactors when switching resistive and inductive AC loads (AC-1/AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i. e. not synchronized with the phase angle of the supply system.

The rated operational current I_{e} complies with utilization category AC-4 (breaking six times the rated operational current) and is intended for a contact endurance of approx. 200000 operating cycles.
If a shorter endurance is sufficient, the rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4$ can be increased.

If the contacts are used for mixed operation, i. e. normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact endurance can be calculated approximately from the following equation:

$$
X=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}
$$

Characters in the equation:
X Contact endurance for mixed operation in operating cycles
A Contact endurance for normal operation $\left(I_{\mathrm{a}}=I_{\mathrm{e}}\right)$ in operating cycles
B Contact endurance for inching ($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles
C Inching operations as a percentage of total switching operations

3TB50 to 3TB56 contactors
Contactor Type 3TB50 3TB54

Diagram legend:
$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

3RT, 3TB, 3TF Contactors for Switching Motors
3TB5 contactors with DC solenoid system,
3-pole, 55 ... 200 kW

1) For reversing duty, deviations from the vertical axis are not permitted.
2) See "Endurance of the Main Contacts".
3) The opening delay times can increase if the contactor coils are damped against voltage peaks.
4) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
5) See selection table in Catalog LV 1

3RT, 3TB, 3TF Contactors for Switching Motors

3TB5 contactors with DC solenoid system,

3-pole, 55 ... 200 kW

Load rating with DC
Utilization category DC-1
Switching resistive loads ($L / R \leq 1 \mathrm{~ms}$)

- Rated operational current I_{e} (at $55^{\circ} \mathrm{C}$)

Switching frequency
Switching frequency \boldsymbol{z} in operating cycles/hour

- Contactors without overload relays
- Contactors with overload relays (mean value)

AC-1	h^{-1}	1000
AC-2	h^{-1}	500
AC-3	h^{-1}	500
AC-4	h^{-1}	250
	h^{-1}	15

${ }^{1)}$ Contact endurance 0.1 million operating cycles.

3RT, 3TB, 3TF Contactors for Switching Motors

> 3TB5 contactors with DC solenoid system, $$
3 \text {-pole, } 55 \ldots 200 \mathrm{~kW}
$$

Contactors	$\begin{aligned} & \text { Type } \\ & \text { Size } \end{aligned}$		$\begin{aligned} & 3 \text { TB50 } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { 3TB52 } \\ & 8 \end{aligned}$	$\begin{aligned} & 3 \text { TB54 } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { 3TB56 } \\ & 12 \end{aligned}$
Conductor cross-sections						
	Main conductors:		(1) Screw terminals			
	- Finely stranded with cable lug - Stranded with cable lug - Busbars - Terminal screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 16 \ldots 70 \\ & 25 \ldots 70 \\ & 15 \times 3 \\ & M 6 \end{aligned}$	$\begin{aligned} & 35 \ldots 95 \\ & 50 \ldots 120 \\ & 20 \times 3 \\ & \text { M8 } \end{aligned}$	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \\ & 25 \times 5 \\ & \text { M10 } \end{aligned}$	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \\ & 2 \times(25 \times 3) \\ & \text { M10 } \end{aligned}$
	Auxiliary conductors:					
	- Solid - Finely stranded with end sleeve - Pin-end connector (DIN 46231)	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \ldots 2.5 \\ & 0.75 \ldots 1.5 \\ & 2 \times 1 \ldots 2.5 \end{aligned}$			
	Protective conductors: Stranded with cable lug	mm^{2}	--	$25 . .70$	$35 \ldots 70$	$50 . . .120$
(1) and (1) ratings						
(6) rating						
- Uninterrupted current	- Open - Enclosed	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 150 \\ & 135 \end{aligned}$	$\begin{aligned} & 170 \\ & 153 \end{aligned}$	$\begin{aligned} & 240 \\ & 215 \end{aligned}$	$\begin{aligned} & 300 \\ & 270 \end{aligned}$
- Rated power for induction motors at 60 Hz (enclosed)	$\begin{aligned} & 115 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 575 \mathrm{~V} \end{aligned}$	hp hp hp hp	$\begin{aligned} & 25 \\ & 50 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \\ & 120 \\ & 160 \end{aligned}$	$\begin{aligned} & 40 \\ & 75 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 200 \\ & 250 \end{aligned}$
- Overload relay	- Type - Setting range	A	$\begin{aligned} & 3 \text { RB20 } 56 \\ & 50 \ldots 200 \end{aligned}$	$\begin{aligned} & 3 R B 2056 \\ & 50 \ldots 200 \end{aligned}$	$\begin{aligned} & \text { 3RB20 } 66 \\ & 50 \ldots 250 \end{aligned}$	$\begin{aligned} & \text { 3RB20 } 66 \\ & 200 . . .540 \end{aligned}$
- NEMA/EEMAC size	- Contactors - Starters (= contactors + overload relay, enclosed)		$\begin{aligned} & 4 \\ & 3 \end{aligned}$			
(11) rating						
- Uninterrupted current	- Open - Enclosed	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 150 \\ & 135 \end{aligned}$	$\begin{aligned} & 150 \\ & 135 \end{aligned}$	$\begin{aligned} & 240 \\ & 215 \end{aligned}$	$\begin{aligned} & 390 \\ & 350 \end{aligned}$
- Rated power for induction motors at 60 Hz	$\begin{aligned} & 115 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 575 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { hp } \\ & \text { hp } \\ & \text { hp } \\ & \text { hp } \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 30 \\ & 75 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 125 \\ & 250 \\ & 300^{11} \end{aligned}$
- Overload relay	- Type - Setting range	A	$\begin{aligned} & 3 \text { 3RB20 } 56 \\ & 50 \ldots 200 \end{aligned}$	$\begin{aligned} & 3 \text { 3R20 } 56 \\ & 50 \ldots 200 \end{aligned}$	$\begin{aligned} & 3 \text { 3RB20 } 66 \\ & 50 \ldots 250 \end{aligned}$	$\begin{aligned} & \text { 3RB20 } 66 \\ & 200 \ldots 540 \end{aligned}$
- NEMA/EEMAC size	- Contactors - Starters (= contactors + overload relay, enclosed)		$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
Short-circuit protection devices						
- CLASS RK5 fuses		A	400	400	450	600
- Circuit breakers acc. to UL 489		A	175	175	250	600

1) At $575 / 600 \mathrm{~V}$ AC max
rated motor current 325 A and motor starting current 3250 A .

3TF2 contactors, 3-pole, 2.2 ... 4 kW

Overview

AC and DC operation

IEC 60947 (VDE 0660).
The contactors are suitable for use in any climate. The contactors with screw terminals are finger-safe according to EN 50274
The contactors are available in versions with screw terminals, 6.3 mm plug-in terminals and solder pin connections for soldering in printed circuit boards.

Design

Auxiliary contacts

Contact reliability
To switch voltages $\leq 110 \mathrm{~V}$ and currents $\leq 100 \mathrm{~mA}$ the 3 TF2 contactor relays should be used as they guarantee a high level of contact reliability.

These auxiliary contacts are suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of 17 V and higher.

Short-circuit protection of the contactors

For short-circuit protection of the contactors without overload relays see "Technical specifications"

Version

The 3TF2 contactors are available with SIGUT screw terminals, $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ flat connectors and solder pin connectors.

The contactors with $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ flat connectors can be used in the plug-in base with solder pin connectors for printed circuit boards. The contactors are coded and the plug-in base is codable in order to ensure non-interchangeability.

Auxiliary switch blocks

The contactors with 1 auxiliary contact with screw terminals can be expanded by up to four contacts by the addition of snap-on auxiliary switch blocks.

The contactors according to EN 50012 with identification number 10E can be expanded into contactors with 2, 4 and 5 auxiliary contacts according to EN 50012 using auxiliary switch blocks.
The identification numbers 11E, 22E, 23E and 32E on the auxiliary switch blocks apply to the complete contactors (see the graphic on the right). These auxiliary switch blocks cannot be combined with contactors with identification number 01E

All contactors with screw terminals and 1 auxiliary contact according to EN 50012, identification number 10E and 01E, can be extended with auxiliary switch blocks 40, 31, 22, 20, 11 and 02 to obtain contactors with 3 or 5 auxiliary contacts according to EN 50005. The identification numbers on the auxiliary switch blocks apply only to the attached auxiliary switches

3TF20-0 motor contactors according to EN 50012 or EN 50005

Surge suppression

RC elements, varistors, diodes or diode assemblies (combination of a diode and a Zener diode for short break times) can be plugged onto all 3TF2 contactors and auxiliary switch blocks with screw terminals from the front in order to damp opening surges in the coil. The unit labeling plate must be removed for this purpose. It can be snapped onto the attached surge suppressor.

Note:

The OFF-delay of the NO contacts and the ON-delay of the NC contacts increase if the contactor coils are protected against voltage peaks (noise suppression diode 6 to 10 times, diode assemblies 2 to 6 times, varistor +2 to 5 ms).

Reversing duty

To use the 3TF2 AC-operated contactor in reversing or Dahlander mode an additional dead interval of 50 ms is required along with an NC contact interlock.

Technical specifications

Contactors	Type \quad 3TF2
Endurance of the auxiliary contacts	

The contact endurance for utilization category AC-12 or AC-15/AC-14 depends mainly on the breaking current. It is assumed that the operating mechanisms are switched randomly, i. e. not synchronized with the phase angle of the supply system. Diagram legend:
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

3TF2

Endurance of the main contacts

The characteristic curves show the contact endurance of the contactors when switching inductive AC loads (AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i. e. not synchronized with the phase angle of the supply system. The rated operational current I_{e} complies with utilization category AC-4 (breaking six times the rated operational current) and is intended for a contact endurance of at least 200000 operating cycles. If a shorter endurance is sufficient, the rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4$ can be increased.
If the contacts are used for mixed operation, i. e. normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact endurance can be calculated approximately from the following equation:
$x=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}$
Characters in the equation:
$X=$ Contact endurance for mixed operation in operating cycles
$A=$ Contact endurance for normal operation $\left(I_{\mathrm{a}}=I_{\mathrm{e}}\right)$ in operating cycles
$B=$ Contact endurance for inching
($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles
$C=$ Inching operations as a percentage of total switching operations

Diagram legend:
$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

3RT, 3TB, 3TF Contactors for Switching Motors

3TF2 contactors, 3-pole, 2.2 ... 4 kW

Contactors	Type		3TF20/3TF28	3TF22/3TF29
General data				
Permissible mounting position	AC and DC operation		Any	
Mechanical endurance	- AC operation - DC operation - Auxiliary switch block	Operating cycles	10 million 30 million 10 million	
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3) - Screw terminals - Flat connector $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ - Solder pin connections		$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & 690 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 690^{1)} \\ & -- \\ & \hline- \\ & \hline \end{aligned}$
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$ (degree of pollution 3) - Screw terminals - Flat connector $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ - Solder pin connections		$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & 6 \end{aligned}$	$\begin{gathered} 8^{2)} \\ -- \\ \hline- \end{gathered}$
Protective separation between coil and main contacts (acc. to EN 61140)		V	Up to 300	
Mirror contacts				
A mirror contact is an auxiliary NC contact that cannot be closed simulta neously with a NO main contact.			Yes, this applies to both the basic unit as well as to between the basic unit and the mounted auxiliary switch block acc. to EN 60947-4-1, Appendix F	Yes, acc. to EN 60947-4-1 Appendix F SUVA
Permissible ambient temperature ${ }^{3)}$	- During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \\ & -55 \ldots+80 \end{aligned}$	
Degree of protection acc. to EN 60947-1 Appendix C			IP00 open IP20 for screw terminals IP40 coil assembly	
Touch protection acc. to EN 50274			Finger-safe for screw terminals	
Shock resistance				
- Without 3TX44 auxiliary switch block				
- Rectangular pulse	- AC operation - DC operation	g / ms g / ms	8.3/5 and 5.2/10 11.3/5 and 9.2/10	--
- Sine pulse	- AC operation - DC operation	g / ms g / ms	$13 / 5$ and $8 / 10$ $17.4 / 5$ and 12.9/10	--
- With 3TX44 auxiliary switch block				
- Rectangular pulse	- AC operation - DC operation	g / ms g / ms	5/5 and 3.6/10 9/5 and 6.9/10	5/5 and 3.6/10 9/5 and 7.3/10
- Sine pulse	- AC operation - DC operation	g / ms g / ms	7.8/5 and 5.6/10 $13.9 / 5$ and 10.1/10	7.8/5 and 5.6/10 $14 / 5$ and $11 / 10$
Conductor cross-sections			${ }^{4)}$	
Short-circuit protection for contactors without overload relays				
Main circuit ${ }^{5)}$ - Fuse links gL/gG LV HRC 3NA, DIAZED 5SB, NEOZE acc. to IEC 60947-4-1 (VDE 0660, Part 102)	SSE - Type of coordination "1" - Type of coordination "2"6) - Weld-free	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 25 \\ & 10 \\ & 10 \end{aligned}$	
- Miniature circuit breaker with C characteristic		A	10	
Auxiliary circuit Short-circuit current $I_{\mathrm{k}} \geq 1 \mathrm{kA}$				
- Fuse links gL/gG DIAZED 5SB, NEOZED 5SE		A	6	

DIAZED 5SB, NEOZED 5SE

1) Auxiliary contacts 500 V .
2) Auxiliary contacts 6 kV .
3) Applies to $50 / 60 \mathrm{~Hz}$ coil: At $50 \mathrm{~Hz}, 1.1 \times U_{S}$, side-by-side mounting and 100% ON period the max. ambient temperature is $+40^{\circ} \mathrm{C}$.
4) See "Conductor Cross-Sections"
5) According to excerpt from IEC 60947-4-1 (VDE 0660 Part 102)

Type of coordination "1":
Destruction of the contactor and the overload relay is permissible. The contactor and/or overload relay can be replaced if necessary.
Type of coordination "2":
The overload relay must not suffer any damage. Contact welding on the contactor is permissible, however, if the contacts can be easily separated
6) A short-circuit current of $I_{\mathrm{q}} \leq 6 \mathrm{kA}$ applies to type of coordination "2".

Contactors	Type		3TF2
Control			
Magnetic coil operating range ${ }^{1 \text { 1 }}$			$0.8 \ldots 1.1 \times U_{\text {S }}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times U_{s}$)			
Standard version:			
- AC operation, 50 Hz	Closing	VA	
			0.41
	Closed	VA	6.8
	P.f.		
- AC operation, 60 Hz	Closing	VA	14.4
			0.36
	Closed	VA	6.1
	P.f.		0.46
- AC operation, $50 / 60 \mathrm{~Hz}{ }^{1)}$	Closing	VA	16.5/13.2
			0.43/0.38
	Closed	VA	8.0/5.4
	P.f.		0.48/0.42
For USA and Canada:			
- AC operation, 50 Hz	Closing	VA	14.6
			0.38
	Closed	VA	6.5
	P.f.		0.40
- AC operation, 60 Hz	Closing	VA	14.4
			0.30
	Closed	VA	6.0
	P.f.		0.44
- DC operation	Closing = Closed	W	3
Permissible residual current of the electronic circuit ${ }^{2}$ (for 0 signal)			
	- AC operation - DC operation	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \leq 3 \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \\ & \leq 1 \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \end{aligned}$
Operating times at $0.8 \ldots 1.1 \times \mathbf{U}^{3}{ }^{3)}$ Total break time $=$ Opening delay + Arcing time			
Values apply with coil in cold state and at operating temperature for operating range			
- AC operation	Closing delay	ms	5... 19
	Opening delay	ms	2 ... 22
- Dead interval			To use the 3TF2 AC-operated contactor in reversing an additional dead interval of 50 ms is required along with an NC contact interlock.
- DC operation	Closing delay	ms	$16 . . .65$
	Opening delay	ms	$2 . . .5$
- Arcing time		ms	10... 15
Operating times at $1.0 \times \mathbf{U}_{\mathrm{s}}{ }^{3)}$			
- AC operation	Closing delay	ms	5... 18
	Opening delay	ms	3... 21
- Dead interval			To use the 3TF2 AC-operated contactor in reversing an additional dead interval of 50 ms is required along with an NC contact interlock.
- DC operation	Closing delay	ms	$19 . .31$
	Opening delay	ms	3... 4
- Arcing time		ms	$10 . . .15$

1) Applies to $50 / 60 \mathrm{~Hz}$ coil:

At $50 \mathrm{~Hz}, 1.1 \times U_{\mathrm{S}}$, side-by-side mounting and 100% ON period the max. ambient temperature is $+40^{\circ} \mathrm{C}$.
2) The 3 TX4 490-1J additional load module is recommended for higher residual currents (see "Accessories and Spare Parts").
3) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

3RT, 3TB, 3TF Contactors for Switching Motors

3TF2 contactors, 3-pole, 2.2 ... 4 kW

Contactors	Type Size		$\begin{aligned} & \text { 3TF28 } \\ & \text { 3TF29 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3TF20 ..-0..., } \\ & \text { 3TF22 ..-0... } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3TF20 ..-3..., } \\ & \text { 3TF20 ..-6..., } \\ & \text { 3TF20 ..-7... } \\ & \text { S00 } \end{aligned}$
Main circuit					
AC capacity					
Utilization category AC-1 Switching resistive loads					
- Rated operational current I_{e} (at $40^{\circ} \mathrm{C}$)	Up to $400 / 380 \mathrm{~V}$ $690 / 660 \mathrm{~V}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	18
- Rated operational current I_{e} (at $55^{\circ} \mathrm{C}$)	$\begin{aligned} & 400 / 380 \mathrm{~V} \\ & 690 / 660 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	16
- Rated power of AC loads $\text { P.f. }=1$	$\begin{array}{r} \text { At } 230 / 220 \mathrm{~V} \\ 400 / 380 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 / 660 \mathrm{~V} \end{array}$	kW kW kW kW	$\begin{aligned} & 6.0 \\ & 10 \\ & 13 \\ & 17 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 10 \\ & 13 \\ & 17 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 10 \\ & 13 \end{aligned}$
- Minimum conductor cross-section for loads with I_{e}		mm^{2}	2.5	2.5	2.5
Utilization category AC-2 and AC-3					
- Rated operational current I_{e}	$\begin{array}{r} \text { Up to } 220 \mathrm{~V} \\ 230 \mathrm{~V} \\ 380 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.1 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & 9.0 \end{aligned}$
	$\begin{aligned} & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.8 \\ & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 6.5 \\ & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 6.5 \\ & -- \\ & -- \end{aligned}$
- Rated power for motors with slipring or squirrel cage at 50 and 60 Hz and	At 110 V 115 V 120 V	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.3 \end{aligned}$
	$\begin{aligned} & 127 \mathrm{~V} \\ & 200 \mathrm{~V} \\ & 220 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.2 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.2 \\ & 2.4 \end{aligned}$
	$\begin{aligned} & 230 \mathrm{~V} \\ & 240 \mathrm{~V} \\ & 380 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.6 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.6 \\ & 4.0 \end{aligned}$
	$\begin{aligned} & 400 \mathrm{~V} \\ & 415 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 4.0 \end{aligned}$
	$\begin{aligned} & 460 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 575 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.9 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$
	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	--
Utilization category AC-4 (contact endurance approx. 200000 operating cycles at $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)					
- Rated operational current I_{e}	Up to 400 V 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 1.8 \end{aligned}$	2.6
- Rated power for motors with squirrel cage at 50 and 60 Hz and	$\begin{array}{r} \text { At } 110 \mathrm{~V} \\ 115 \mathrm{~V} \\ 120 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.33 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.33 \\ & 0.35 \end{aligned}$
- Max. permissible rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4 \hat{=} I_{\mathrm{e}} / \mathrm{AC}-3$ up to 500 V , for reduced contact endurance and reduced switching frequency	$\begin{aligned} & 127 \mathrm{~V} \\ & 200 \mathrm{~V} \\ & 220 \mathrm{~V} \end{aligned}$	kW kW kW	$\begin{aligned} & 0.27 \\ & 0.42 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.58 \\ & 0.64 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.58 \\ & 0.64 \end{aligned}$
	$\begin{aligned} & 230 \mathrm{~V} \\ & 240 \mathrm{~V} \\ & 380 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$ kW	$\begin{aligned} & 0.49 \\ & 0.51 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.70 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.70 \\ & 1.10 \end{aligned}$
	$\begin{aligned} & 400 \mathrm{~V} \\ & 415 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.93 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.20 \\ & 1.27 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.20 \\ & 1.27 \end{aligned}$
	$\begin{aligned} & 460 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 575 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.45 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.45 \end{aligned}$
	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.15 \end{aligned}$	--

3RT, 3TB, 3TF Contactors for Switching Motors

3TF2 contactors, 3-pole, 2.2 ... 4 kW

Contactors	Type Size	$\begin{aligned} & \text { 3TF28 } \\ & \text { 3TF29 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3TF20 ..-0.... } \\ & \text { 3TF22 ..-0... } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3TF20 ..-3..., } \\ & \text { 3TF20 .-6..., } \\ & \text { 3TF20 ..-7... } \\ & \text { S00 } \end{aligned}$

Main circuit
Load rating with DC

Utilization category DC-1

(contact endurance 0.1×10^{6} operating cycles; $L / R \leq 1 \mathrm{~ms}$)

- Rated operational current I_{e} (at $55^{\circ} \mathrm{C}$)

- 1 conducting path	Up to 24 V	A	10	16	16
	60 V	A	4	6	6
	110 V	A	1.5	2	2
	220/240 V	A	0.6	1	1
- 2 conducting paths in series	Up to 24 V	A	10	16	16
	60 V	A	10	16	16
	110 V	A	4	6	6
	220/240 V	A	1.5	2	2
- 3 conducting paths in series	Up to 24 V	A	10	16	16
	60 V	A	10	16	16
	110 V	A	10	16	16
	220/240 V	A	4	6	6

Utilization category DC-3 and DC-5
Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational current $I_{\mathrm{e}}\left(\right.$ at $\left.55^{\circ} \mathrm{C}\right)$

- 1 conducting path	Up to 24 V	A	4	6
	60 V	A	1.8	6

3TF2 contactors, 3-pole, 2.2 ... 4 kW

3RA13, 3RA14 Contactor Assemblies
 3RA13 Reversing Contactor Assemblies

3RA13 complete units, 3 ... 45 kW

Overview

The 3RA13 reversing contactor assemblies can be ordered as follows:

Sizes S00 to S3

Fully wired and tested, with mechanical and electrical interlock. For assemblies with AC operation and $50 / 60 \mathrm{~Hz}$, a dead interval of 50 ms must be provided when used with voltages $\geq 500 \mathrm{~V}$; a dead interval of 30 ms is recommend for use with voltages $\geq 400 \mathrm{~V}$. These dead times do not apply to assemblies with DC operation.

Sizes S00 to S12

As individual parts for customer assembly.
There is also a range of accessories (auxiliary switch blocks, surge suppressors, etc.) that must be ordered separately.

For overload relays for motor protection, see
"Protection Equipment --> Overload Relays"
The 3RA13 contactor assemblies have screw terminals and are suitable for screwing or snapping onto 35 mm standard mounting rails.

Complete units

The fully wired reversing contactor assemblies are suitable for use in any climate. They are finger-safe according to EN 50274.

The contactor assemblies consist of 2 contactors with the same power, with one NC contact in the basic unit. The contactors are mechanically and electrically interlocked (NC contact interlock).

For motor protection, either 3RU11 or 3RB2. . overload relays for direct mounting or stand-alone installation or thermistor motor protection tripping units must be ordered separately.

Components for customer assembly

Assembly kits for all sizes are available for customer assembly of reversing contactor assemblies.
Contactors, overload relays, the mechanical interlock (as of size SO) and - for momentary-contact operation - auxiliary switch blocks for latching must be ordered separately.

Rated data AC-2 and AC-3 at AC 50 Hz 400 V		Size	Order No.					
Rating kW	Operational current I_{e} A		Contactors	Mechanical interlock ${ }^{11}$	Mechanical interlock ${ }^{2)}$	Mechanical interlock ${ }^{3)}$	Assembly kit	Fully wired and tested contactor assemblies
3	7	S00	3RT10 15	--4)	--	--	3RA19 13-2A ${ }^{5}$	3RA13 15-8XB30-1 3RA13 16-8XB30-1 . 3RA13 17-8XB30-1 .
4	9		3RT10 16					
5.5	12		3RT10 17					
5.5	12	S0	3RT10 24	3RA19 24-1A	3RA19 24-2B	--	3RA19 23-2A ${ }^{6)}$	3RA13 24-8XB30-1 . . 3RA13 25-8XB30-1 3RA13 26-8XB30-1
7.5	17		3RT10 25					
11	25		3RT10 26					
15	32	S2	3RT10 34	3RA19 24-1A	3RA19 24-2B	--	3RA19 33-2A ${ }^{7}$	3RA13 34-8XB30-1 3RA13 35-8XB30-1 . 3RA13 36-8XB30-1 .
18.5	40		3RT10 35					
22	50		3RT10 36					
30	65	S3	3RT10 44	3RA19 24-1A	3RA19 24-2B	--	3RA19 43-2A ${ }^{7}$	3RA13 44-8XB30-1 3RA13 45-8XB30-1 . . 3RA13 46-8XB30-1 . .
37	80		3RT10 45					
45	95		3RT10 46					
55	115	S6	3RT10 54	--	--	3RA19 54-2A	3RA19 53-2M ${ }^{\text {8 }}$	--
75	150		3RT10 55					
90	185		3RT10 56					
110	225	S10	3RT10 64	--	--	3RA19 54-2A	3RA19 63-2A ${ }^{8)}$	--
132	265		3RT10 65					
160	300		3RT10 66					
200	400	S12	3RT10 75	--	--	3RA19 54-2A	3RA19 73-2A ${ }^{8)}$	--
250	500		3RT10 76					

1) Can be mounted onto the front.
2) Laterally mountable with one auxiliary contact.
3) Laterally mountable without auxiliary contact.
4) Interlock can only be ordered with assembly kit.
${ }^{5)}$ Assembly kit contains: mechanical interlock; connecting clips for 2 contactors; wiring modules on the top and bottom.
5) Assembly kit contains: wiring modules on the top and bottom.
${ }^{\text {7) }}$ Assembly kit contains: 2 connecting clips for contactors; wiring modules on the top and bottom.
${ }^{8)}$ Assembly kit contains: wiring module on the top and bottom.

Function

The operating times of the individual 3RT10 contactors are rated in such a way that no overlapping of the contact making and the arcing time between two contactors can occur on reversing, providing they are interlocked by way of their auxiliary switches (NC contact interlock) and the mechanical interlock. For assemblies with AC operation and $50 / 60 \mathrm{~Hz}$, a dead interval of 50 ms must be provided when used with voltages $\geq 500 \mathrm{~V}$; a dead interval of 30 ms is recommend for use with voltages $\geq 400 \mathrm{~V}$. These dead times do not apply to assemblies with DC operation.
The operating times of the individual contactors are not affected by the mechanical interlock.
The following points should be noted:
Size S00

- For maintained-contact operation:

Use contactors with an NC contact in the basic unit for the electrical interlock.

- For momentary-contact operation:

Use contactors with an NC contact in the basic unit for the electrical interlock; in addition, an auxiliary switch block with at least one NO contact for latching is required per contactor.

Sizes S0 to S3

- For maintained-contact operation:

The contactors have no auxiliary contact in the basic unit; NC contacts for the electrical interlock are therefore integrated in the mechanical interlock that can be mounted on the side of each contactor (one contact each for the left and right-hand contactors).

- For momentary-contact operation:

Electrical interlock as for maintained-contact operation; for the purpose of latching an auxiliary contact with an NO contact is additionally required for each contactor. This contact can be snapped onto the top of the contactors. Alternatively, auxiliary switch blocks mounted on the side can be used; they must be fitted onto the outside of each contactor.
If the front-mounted mechanical interlock is used for size SO to S3 contactors, two location holes for single-pole auxiliary switch blocks are provided on the front of each S0 or S2 contactor, while three additional, single-pole auxiliary switch blocks can be snapped onto S3 contactors. The maximum auxiliary switch fittings per contactor must not be exceeded.
When size S 2 and S 3 contactors are combined with a frontmounted mechanical interlock, the assembly kits for 3RA19 33-2B and 3RA19 43-2B contactor assemblies cannot be used.

Sizes S6 to S12

To insert the mechanical interlock, the prestamped location holes positioned opposite on the contactor must be knocked out. The internal auxiliary contacts (up to $1 \mathrm{NO}+1 \mathrm{NC}$ per contactor) can be used for the electrical interlock and latching. The mechanical interlock itself does not contain any auxiliary contacts. Additional auxiliary contacts can be used on the outside and front (on the front in the case of 3RT10) of the reversing contactor assembly.
Surge suppression
Sizes S00 to S3
All contactor assemblies can be fitted with RC elements or varistors for damping opening surges in the coil.

As with the individual contactors, the surge suppressors can either be plugged onto the top of the contactors (SOO) or fitted onto the coil terminals on the top or bottom (S0 to S3).
Sizes S6 to S12
The contactors are fitted with varistors as standard.

Technical specifications

The technical specifications are identical to those of the 3RT10 .. contactors listed on page $3 / 17$ onwards.

The © and (1) approvals only apply to the complete contactor assemblies and not to the individual parts for customer assembly.

3RA13, 3RA14 Contactor Assemblies 3RA14 Contactor Assemblies for Wye-Delta Starting

3RA14 complete units, 3 ... 75 kW

Overview

These 3RA14 contactor assemblies for wye-delta starting are designed for standard applications.
Note:
Contactor assemblies for wye-delta starting in special applications such as very heavy starting or wye-delta starting of special motors must be customized. Help with designing such special applications is available from Technical Assistance.
The 3RA14 contactor assemblies for wye-delta starting can be ordered as follows:

Sizes S00 to S3:

Fully wired and tested, with electrical interlock, dead interval of up to 10 s on reversing (size SOO with electrical and mechanical interlocks)

Sizes S00 to S12:
As individual parts for customer assembly.

A dead interval of 50 ms on reversing is already integrated in the time relay function.
There is also a range of accessories (auxiliary switch blocks, surge suppressors, etc.) that must be ordered separately.
For overload relays for motor protection see
"Protection Equipment --> Overload Relays --> 3RB2 Solid-State Overload Relays"
The 3RA14 contactor assemblies have screw terminals and are suitable for screwing or snapping onto 35 mm standard mounting rails.
Fully wired and tested 3RA14 contactor assemblies have one unassigned NO contact which is mounted onto the front of the K3 delta contactor.

A solid-state time-delay auxiliary switch block is snapped onto the front of the complete contactor assemblies, size SOO up to 7.5 kW , while a timing relay is mounted onto the side of sizes SO to $\mathrm{S} 3,11 \mathrm{~kW}$ to 75 kW .

Rated data at AC 50 Hz 400 V			Size	Line/delta contactor	Star contactor	Order No. complete	Accessories for customer assembly	
Rating	Operational current I_{e}	Motor current					Timing relay	Assembly kit A, for double infeed
kW	A	A						
5.5	12	$9.5 \ldots 13.8$	S00-S00-S00	3RT10 15	3RT10 15	$\begin{aligned} & \text { 3RA14 15-8XB31-1... } \\ & \text { 3RA14 16-8XB31-1... } \end{aligned}$	3RT19 16-2G. 51	--
7.5	17	12.1... 17		3RT10 17			3RP15 74-1N. 30	
11	25	19 ... 25	S0-S0-S0	3RT10 24 3RT10 26	3RT10 24	$\begin{aligned} & \hline \text { 3RA14 23-8XC21-1... } \\ & \text { 3RA14 25-8XC21-1... } \end{aligned}$	3RP15 74-1N. 30	--
15	32	24.1... 34						
18.5	40	$34.5 \ldots 40$						
22	50	31 ... 43	S2-S2-S0	3RT10 34	3RT10 26	3RA14 34-8XC21-1...	3RP15 74-1N. 30	3RA19 33-2C ${ }^{3)}$
30	50	48.3 ... 65		3RT10 35				
37	80	62.1 .. 77.8	S2-S2-S2	3RT10 36	3RT10 34	3RA14 35-8XC21-1... 3RA14 36-8XC21-1...		3RA19 33-2B ${ }^{3)}$
45	86	$69 \quad \ldots .86$						
55	115	77.6 ... 108.6	S3-S3-S2	3RT10 44	3RT10 35	3RA14 44-8XC21-1...	3RP15 74-1N. 30	3RA19 43-2C ${ }^{3)}$
75	150	120.7 ... 150		3RT10 45	3RT10 36	3RA14 45-8XC21-1...		
90	160	86 ... 160	S6-S6-S3	3RT10 54	3RT10 44	--	3RP15 74-1N. 30	--
110	195	86 ... 195						
132	230	86 ... 230		3RT10 55	3RT10 45			
160	280	86 ... 280		3RT10 56	3RT10 46			
200	350	95 ... 350	S10-S10-S6	3RT10 64	3RT10 54	--	3RP15 74-1N. 30	--
250	430	95 ... 430		3RT10 65	3RT10 55			
315	540	277 ... 540	S12-S12-S10	3RT10 75	3RT10 64	--	3RP15 74-1N. 30	--
355	610	277 ... 610						
400	690	277 ... 690			3RT10 65			
500	850	277 ... 850		3RT10 76	3RT10 66			

1) Assembly kit contains mechanical interlock, 3 connecting clips; wiring modules on the top (connection between line and delta contactor) and on the bottom (connection between delta and star contactor); star jumper.
2) Assembly kit contains 5 connecting clips; wiring modules on the top (connection between line and delta contactor) and on the bottom (connection between delta and star contactor); star jumper
3) Assembly kit contains wiring module on the bottom (connection between delta and star contactor) and star jumper.
4) Wiring module on top from reversing contactor assembly (note conductor cross-sections).

3RA13, 3RA14 Contactor Assemblies 3RA14 Contactor Assemblies for Wye-Delta Starting

3RA14 complete units, 3 .. 75 kW

Components for customer assembly

Assembly kits with wiring modules and, if necessary, mechanical connectors are available for contactor assemblies for wye-delta starting. Contactors, overload relays, wye-delta timing relays, auxiliary switches for electrical interlock - if required also feeder terminals, mechanical interlocks (exception: In the case of the assembly kit for size SOO contactor assemblies the mechanical interlock between the delta contactor and the star contactor is included in the kit) and base plates - must be ordered separately.
The wiring kits for sizes SOO and SO contain the top and bottom main conducting path connections between the line and delta contactors (top) and between the delta and star contactors (bottom).

In the case of sizes S 2 to S 12 only the bottom main conducting path connection between the delta and star contactors is included in the wiring module, owing to the larger conductor cross-section at the infeed.

Motor protection

Overload relays or thermistor motor protection tripping units can be used for overload protection.
The overload relay can be either mounted onto the line contactor or separately fitted. It must be set to 0.58 times the rated motor current.

Note:
The selection of contactor types refers to fused configurations (see table on page 3/88).

Assembly kit B, for single infeed	Star jumper	Base plates	Overload relay, thermal (CLASS 10 trip class)		Overload relay, solid-state (CLASS 10 trip class)	
			Setting range A	Order No.	Setting range A	Order No.
3RA19 13-2B ${ }^{\text {1) }}$	3RT19 16-4BA31	--	$\begin{array}{llll} 5.5 \ldots & 8 \\ 7 & \ldots & 10 \end{array}$	$\begin{aligned} & \text { 3RU11 16-1HBO } \\ & \text { 3RU11 16-1JBB0 } \end{aligned}$	3 ... 12	3RB20 16-1SB0
3RA19 23-2B ${ }^{\text {2) }}$	3RT19 26-4BA31	--	11 $\ldots 16$ 14 $\ldots 20$ 20 \ldots	3RU11 26-4AB0 3RU11 26-4BB0 3RU11 26-4DB0	6 ... 25	3RB20 26-1QB0
3RV19 35-1A	3RT19 26-4BA31	3RA19 32-2E	$\begin{array}{ll} \hline 18 & \ldots 25 \\ 28 & \ldots 4 \end{array}$	3RU11 36-4DB0 3RU11 36-4FB0	12.5 ... 50	3RB20 36-1UB0
	3RT19 36-4BA31	3RA19 32-2F	$\begin{array}{lll} 36 & \ldots & 45 \\ 40 & \ldots & 50 \end{array}$	3RU11 36-4GB0 3RU11 36-4HB0		
--	3RT19 36-4BA31	3RA19 42-2E	$\begin{array}{ll} \hline 45 & \ldots 63 \\ 70 & \ldots 90 \\ \hline \end{array}$	$\begin{aligned} & \text { 3RU11 46-4JB0 } \\ & \text { 3RU11 46-4LB0 } \end{aligned}$	25 ... 100	3RB20 46-1EB0
3RA19 53-3D ${ }^{4)}$	3RT19 46-4BA31	3RA19 52-2E	--	--	50 ... 200	3RB20 56-1FW2
						3RB20 56-1FC2
--	3RT19 56-4BA31	3RA19 62-2E	--	--	55 ... 250	3RB20 66-1GC2
--	3RT19 66-4BA31	3RA19 72-2E	--	--	160 ... 630	3RB20 66-1MC2

For footnotes see page 3/86.

3RA13, 3RA14 Contactor Assemblies 3RA14 Contactor Assemblies for Wye-Delta Starting

3RA14 complete units, 3 ... 75 kW

Function

Wye-delta starting can only be used either if the motor normally operates in a Δ connection or starts softly or if the load torque during Y starting is low and does not increase sharply. On the Y step the motors can carry approximately 50% (class KL 16) or 30% (class KL 10) of their rated torque; The tightening torque is approximately $1 / 3$ of that during direct on-line starting. The starting current is approximately 2 to 2.7 times the rated motor current.

The changeover from Y to Δ must not be effected until the motor has run up to rated speed. Operating mechanisms which require this changeover to be performed earlier are unsuitable for wyedelta starting.

The ratings given in the table are only applicable to motors with a starting current ratio $I_{\mathrm{A}} \leq 8.4 \times I_{\mathrm{N}}$ and using either a 3RT19 16-2G or 3RT19 26-2G solid-state time-delay auxiliary
switch block with a wye-delta function or a 3RP15 74. wye-delta timing relay with a dead interval on reversing of approximately 50 ms .

Surge suppression

Sizes S00 to S3:
All contactor assemblies can be fitted with RC elements, varistors or diode assemblies for damping opening surges in the coil.
As with the individual contactors, the surge suppressors can either be plugged onto the top of the contactors (SOO) or fitted onto the coil terminals on the top or bottom (S0 to S3)
Sizes S6 to S12:
The contactors are fitted with varistors as standard.

Technical specifications

Short-circuit protection with fuses for motor feeders with short-circuit currents up to 50 kA and 690 V. For overload relays see "Protection Equipment --> Overload Relays --> 3RB2 Solid-State Overload Relays"

Rating	Sizes of contactors K1-K3-K2	Rated motor current	Overload relay	Setting range (the overload relays must be set to 0.58 times the rated motor current)	Permissible back-up fuses for starters, comprising contactor assemblies and overload relays.					
					Single Fuse LV HR DIAZE NEOZ gL/gG Type	ble infeed ${ }^{1}$ Type 3NA Type 5SB Type 5SE ational class dination	LV HRC TYPE 3ND Operational class aM Type of coordination	(1) listed fuses CLASS RK5/L	British Stand Fuses BS88 Type coord	
							$\begin{aligned} & \text { "2" } \\ & \text { A } \end{aligned}$	A	"1"	"2"
5.5	S00-S00-S00	12	3RU11 16-1HB0	5.5 ... 8	35 20		10	30	35	20
7.5	SOO-S00-S00	16	3RU11 16-1JB0	7 ... 10	35	20	16	40	35	20
11	S0-S0-S0	22	3RU11 26-4AB0	11 ... 16	$\begin{array}{r} 63 \\ 100 \\ 100 \end{array}$	25	20	60	63	25
15	S0-S0-S0	29	3RU11 26-4BB0	14 ... 20		35	20	80	100	35
18.5	S0-S0-S0	35	3RU11 26-4DB0	20 ... 25		35	20	100	100	35
22	S2-S2-S0	41	3RU11 36-4EB0	22 ... 32	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	63	35	125	125	63
30	S2-S2-S0	55	3RU11 36-4FB0	28 ... 40		63	50	150	125	63
37	S2-S2-S2	66	3RU11 36-4GB0	36 ... 45	$\begin{aligned} & 125 \\ & 160 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \end{aligned}$	50	175	125	63
45	S2-S2-S2	80	3RU11 36-4HB0	40 ... 50			50	200	160	80
55	S3-S3-S2	97	3RU11 46-4KB0	57 ... 75	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	125	63	300	250	125
75	S3-S3-S2	132	3RU11 46-4LB0	70 ... 90		160	80	350	250	160
90	S6-S6-S3	160	3RB20 56-1FC2	50 ... 200	$\begin{aligned} & 355 \\ & 355 \end{aligned}$	$\begin{aligned} & 315 \\ & 315 \end{aligned}$	160	450	355	250
110	S6-S6-S3	195	3RB20 56-1FC2	50 ... 200			160	450	355	250
132	S6-S6-S3	230	3RB20 56-1FC2	50 ... 200	$\begin{aligned} & 355 \\ & 355 \end{aligned}$	$\begin{aligned} & 315 \\ & 315 \end{aligned}$	160	500	355	315
160	S6-S6-S3	280	3RB20 56-1FC2	50 ... 200			200	500	355	315
200	S10-S10-S6	350	3RB20 66-1GC2	55 ... 250	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 400 \\ & 400^{2} \end{aligned}$	2502)	700	500	400
250	S10-S10-S6	430	3RB20 66-1MC2	160 ... 630			315 ${ }^{\text {2) }}$	800	500	400
315	S12-S12-S10	540	3RB20 66-1MC2	160 ... 630	630630	$\begin{aligned} & 500^{2)} \\ & 500^{2)} \end{aligned}$	$400^{2)}$	1000	630	$450{ }^{2}$
355	S12-S12-S10	610	3RB20 66-1MC2	160 ... 630			$400^{2)}$	1000	630	450 ${ }^{\text {) }}$
400	S12-S12-S10	690	3RB20 66-1MC2	160 ... 630	$\begin{aligned} & 630^{2)} \\ & 630^{2)} \end{aligned}$	$\begin{aligned} & 500^{2)} \\ & 500^{2)} \end{aligned}$	$400^{2)}$	1000	$630^{2)}$	$450{ }^{2}$
500	S12-S12-S10	850	3RB20 66-1MC2	160 ... 630			$500^{2)}$	1200	$630^{2)}$	500^{2}

1) The maximum rated motor current must not be exceeded.
2) Only double infeed with separately fused feeder lines for line and delta contactor is possible because the maximum possible fuse value lies far below the rated motor current.

3) For short-circuit protection with overload relays see "Protection Equipment
--> Overload Relays --> 3RB2 Solid-State Overload Relays"
4) Up to $I_{\mathrm{k}}<0.5 \mathrm{kA} ; \leq 260 \mathrm{~V}$.
${ }^{3)}$ For circuit diagrams of the control circuit see page $3 / 238$.

3TD, 3TE Contactor Assemblies

3TD6 reversing contactor assemblies, 335 kW

Overview

The contactor assemblies are suitable for use in any climate and the contactors are mechanically interlocked. They are fingersafe according to EN 50274.

Complete units and components for customer assembly are available. For motor protection, either overload relays for standalone installation or thermistor motor protection tripping units must be ordered separately.

Complete units

3TD68 contactor assemblies each consist of two mechanically interlocked 3TF68 contactors. Electrical interlocking is wired. The main and control circuits are wired according to the schematics.
An internal circuit diagram, a type designation and an unit labeling plate are provided on a common cover.

Auxiliary contacts

The contactor assemblies each have $2 \mathrm{NO}+2$ NC contacts per contactor. $1 \mathrm{NO}+1 \mathrm{NC}$ contacts with momentary-contact operation and $2 \mathrm{NO}+1 \mathrm{NC}$ contacts with continuous operation are unassigned.

Function

The operating times of the individual contactors are rated in such a way that no overlapping of the contact making and the arcing time between two contactors can occur on reversing, providing they are interlocked via their auxiliary switches and the operating mechanisms.
The operating times of the individual contactors are not affected by the mechanical interlock.

Technical specifications

Contactors Type				3 TD68
General data				
Permissible mounting position, installation instructions ${ }^{1)}$ The contactors are designed for operation on a vertical mounting surface.				
(1) and (1) ratings				
Rated insulation voltage			V AC	600
Uninterrupted current enclosed			A	550
Maximum horsepower ratings (®1 and (1L) approved values)				
- Rated power for induction motors at 60 Hz		$\begin{array}{r} \text { At } 200 \mathrm{~V} \\ 230 \mathrm{~V} \\ 460 \mathrm{~V} \\ 575 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{hp} \\ & \mathrm{hp} \\ & \mathrm{hp} \\ & \mathrm{hp} \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 229 \\ & 464 \\ & 582 \end{aligned}$
NEMA/EEMAC ratings - Uninterrupted current	NEMA/EEMAC SIZE			6
	- Open - Enclosed		$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 600 \\ & 540 \end{aligned}$
- Rated power for induction motors with 60 Hz		$\begin{array}{r} \text { At } 200 \mathrm{~V} \\ 230 \mathrm{~V} \\ 460 \mathrm{~V} \\ 575 \mathrm{~V} \end{array}$	hp hp hp hp	$\begin{aligned} & 150 \\ & 200 \\ & 400 \\ & 400 \\ & \hline \end{aligned}$
Overload relays	- Type - Setting range		A	$\begin{aligned} & \hline \text { 3RB20 } 66 \\ & 160 . . .630 \end{aligned}$

For short-circuit protection with overload relays see
"Protection Equipment --> Overload Relays --> 3RB2 Solid-State
Overload Relays"
The technical specifications are identical to those of the 3TF68 individual contactors,
The mechanical endurance is 5 million operating cycles for 3TD68.
For the unassigned auxiliary contacts of the individual contactors, see "Circuit Diagrams of the Control Circuits".
${ }^{1)}$ If the contactors are mounted at a 90° angle (conducting paths horizontally one above the other), the following reductions apply: switching frequency: to 80% of the standard values.

3TD, 3TE Contactor Assemblies

3TE6 contactor assemblies for wye-delta starting,
 630 kW

Overview

The contactor assemblies are suitable for use in any climate They are finger-safe according to EN 50274
3TE contactor assemblies are available as complete units and components for customer assembly.
The complete unit combinations are optionally supplied without a main conducting path connection between the line contactor and the delta contactor.

Motor protection

3TE68 contactor assemblies are supplied without overload protection. Overload relays or thermistor motor protection tripping units must be ordered separately.

The overload relay can be either mounted onto the line contactor or separately fitted. It must be set to 0.58 times the rated motor current.

Function

Wye-delta starting can only be used either if the motor normally operates in a Δ connection or starts softly or if the load torque during Y starting is low and does not increase sharply. On the Y step the motors can carry approximately 50% (class KL 16) or 30% (class KL 10) of their rated torque; The tightening torque is approximately $1 / 3$ of that during direct on-line starting. The starting current is approximately 2 to 2.7 times the rated motor current.

The changeover from Y to Δ must not be effected until the motor has run up to rated speed. Operating mechanisms which require this changeover to be performed earlier are unsuitable for wyedelta starting.

The ratings given in the selection table are only applicable to motors with a starting current ratio of $I_{\mathrm{A}} \leq 8.4 \times I_{\mathrm{N}}$ and using a 3RP15 74 wye-delta timing relay with a dead interval of approximately 50 ms on reversing.

Technical specifications

3TD, 3TE Contactor Assemblies

3TE6 contactor assemblies for wye-delta starting, 630 kW

Overview

AC and DC operation (size S3)
UC operation (AC/DC) (sizes S6 to S12)
IEC 60947, EN 60947 (VDE 0660)
The contactors are suitable for use in any climate. They are finger-safe according to EN 50274.

3RT14 contactors are used for switching resistive loads (AC-1) or as contactors, for example, for variable-speed operating mechanisms that normally only have to carry the current.
The accessories for the 3RT10 contactors can also be used here.

For more detailed descriptions about the sizes S6 to S12, see "3RT10 Contactors, 3-pole, 3 ... 250 kW".

Technical specifications

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT14 Contactors for Switching Resistive Loads (AC-1)

3-pole, 140 ... 690 A

Contactors	Type Size		$\begin{aligned} & \text { 3RT14 } 46 \\ & \text { S3 } \end{aligned}$
Control			
Magnetic coil operating range		AC/DC	$0.8 \ldots 1.1 \times U_{S}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{\mathrm{s}}$)			
Standard version: - AC operation, 50 Hz	Closing P.f.	VA	$\begin{aligned} & 270 \\ & 0.68 \end{aligned}$
	Closed P.f.	VA	$\begin{aligned} & 22 \\ & 0.27 \end{aligned}$
- AC operation, $50 / 60 \mathrm{~Hz}$	Closing P.f.	VA	$\begin{aligned} & 298 / 274 \\ & 0.7 / 0.62 \end{aligned}$
	Closed P.f.	VA	$\begin{aligned} & 27 / 20 \\ & 0.29 / 0.31 \end{aligned}$
For USA and Canada: - AC operation, 50 Hz	Closing P.f.	VA	$\begin{aligned} & 270 \\ & 0.68 \end{aligned}$
	$\begin{aligned} & \text { Closed } \\ & \text { P.f. } \end{aligned}$	VA	$\begin{aligned} & 22 \\ & 0.27 \end{aligned}$
- AC operation, 60 Hz	Closing P.f.	VA	$\begin{aligned} & 300 \\ & 0.52 \end{aligned}$
	$\begin{aligned} & \text { Closed } \\ & \text { P.f. } \end{aligned}$	VA	$\begin{aligned} & 21 \\ & 0.29 \end{aligned}$
- DC operation	Closing = Closed	W	15
Operating times for $0.8 \ldots 1.1 \times U_{s}{ }^{1)}$ Total break time $=$ Opening delay + Arcing time			
- AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 17 \ldots 90 \\ & 10 \ldots . .25 \end{aligned}$
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 90 \ldots 230 \\ & 14 \ldots 20 \end{aligned}$
- Arcing time		ms	10... 15
Operating times for $1.0 \times \mathrm{U}^{1}{ }^{1)}$			
- AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 18 . . .30 \\ & 11 . . .23 \end{aligned}$
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 100 \ldots 120 \\ & 16 \ldots 20 \end{aligned}$

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).

Contactors	Type Size		

Utilization category DC-3/DC-5
Shunt-wound and series-wound motors ($\mathrm{L} / \mathrm{R} \leq \mathbf{1 5 ~ m s}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)

-1 conducting path	Up to 24 V	A	6
60 V	A	3	
	110 V	A	1.25
	220 V	A	0.35
	440 V	A	0.15
-2 conducting paths in series	600 V	A	0.1
	Up to 24 V	A	130
60 V	A	130	
	110 V	A	130
	220 V	A	1.75
- 3 conducting paths in series	440 V	A	0.42
	600 V	A	0.27
	Up to 24 V	A	130
60 V	A	130	
	110 V	A	130
	220 V	A	4
	440 V	A	0.8
600 V	A	0.45	

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

- Contactors without overload relays

No-load switching frequency AC
No-load switching frequency DC

$1 / \mathrm{h}$	5000
$1 / \mathrm{h}$	1000
$1 / \mathrm{h}$	650
$1 / \mathrm{h}$	1000

- Rated operation

Acc to AC-3 (AC/DC)
1000
Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage $U^{\prime}: z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT14 Contactors for Switching Resistive Loads (AC-1)

3-pole, 140 ... 690 A

Contactors	Type Size		$\begin{aligned} & \text { 3RT14 } 46 \\ & \text { S3 } \end{aligned}$
Conductor cross-sections			
(1 or 2 conductors can connected) Front clamping point connected on O 0 0 0 Z	Main conductors: With box terminal		(๑) Screw terminals
	- Finely stranded with end sleeve - Finely stranded without end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \ldots 50 \\ & 4 \ldots 50 \end{aligned}$
	- Solid - Stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \ldots 16 \\ & 4 \ldots 70 \end{aligned}$
	- Ribbon cable conductors (number x width x thickness)	mm	$6 \times 9 \times 0.8$
	- AWG cables, solid or stranded	AWG	$10 . . .2 / 0$
Rear cla connect商	- Finely stranded with end sleeve - Finely stranded without end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \ldots 50 \\ & 10 \ldots 50 \end{aligned}$
	- Solid - Stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \ldots 16 \\ & 10 \ldots 70 \end{aligned}$
	- Ribbon cable conductors (number x width x thickness)	mm	$6 \times 9 \times 0.8$
	- AWG cables, solid or stranded	AWG	10... 2/0
Both clamping point connected	- Finely stranded with end sleeve - Finely stranded without end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & \max .2 \times 35 \\ & \max .2 \times 35 \end{aligned}$
	- Solid - Stranded - Ribbon cable conductors (number \times width x thickness)	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & \max .2 \times 16 \\ & \max .2 \times 50 \end{aligned}$
		mm	$2 \times(6 \times 9 \times 0.8)$
	- AWG cables, solid or stranded	AWG	$2 \times(10 . .1 / 0)$
	- Terminal screws - Tightening torque	Nm	M6 (hex. socket, A/F 4) 4 ... 6 (36 ... $53 \mathrm{lb} . i n)$
Connection for drilled copper bars	Max. width ${ }^{1)}$	mm	10
	Main conductors:		
	Without box terminal with cable lugs ${ }^{2)}$		
	- Finely stranded with cable lug - Stranded with cable lug	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 10 \ldots 50^{3)} \\ & 10 \ldots 70^{3)} \end{aligned}$
	- AWG cables, solid or stranded	AWG	7 ... 1/0
	Auxiliary conductors:		
	- Solid	mm^{2}	$2 \times(0.5 \ldots 1.5) 2 \times(0.75 \ldots 2.5)$ acc. to IEC 60947; max. $2 \times(0.75 \ldots 4)$
	- Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5) 2 \times(0.75 \ldots 2.5)$
	- AWG cables, solid or stranded	AWG	$2 \times(20 \ldots 16) 2 \times(18 \ldots 14) 1 \times 12$
	- Terminal screws - Tightening torque	Nm	$\begin{aligned} & \text { M3 } \\ & 0.8 \text {... } 1.2 \text { (7 ... } 10.3 \mathrm{lb} . i n) \end{aligned}$
1) If bars larger than $12 \times 10 \mathrm{~mm}$ are connected, a 3RT19 46-4EA1 terminal cover is needed to comply with the phase clearance.			
2) When connecting rails which are larger than $25 \mathrm{~mm}^{2}$, the 3RT19 46-4EA1 terminal cover must be used to keep the phase clearance.			
${ }^{3)}$ Only with crimped cable lugs according to DIN 46234. Cable lug max. 20 mm wide.			

Contactors	Type Size		
General data			
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.			

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT14 Contactors for Switching Resistive Loads (AC-1)

3-pole, 140 ... 690 A

Operating times

(Total break time $=$ Opening delay + Arcing time)

- Conventional operating mechanism

- With $0.8 \times U_{\mathrm{s} \text { min }} \ldots 1.1 \times U_{\mathrm{s} \max }$	Closing delay Opening delay
- For $U_{\mathrm{s} \min } \ldots U_{\mathrm{s} \max }$	Closing delay Opening delay

	$20 \ldots 95$	$30 \ldots 95$	$45 \ldots 100$
ms	$20 \ldots 60$	$40 \ldots 80$	$60 \ldots 100$
ms	$40 \ldots 65$	$35 \ldots 50$	$50 \ldots 70$
ms	$25 \ldots 50$	$50 \ldots 80$	$70 \ldots 100$
ms	$40 \ldots 60$		
		$105 \ldots 145$	$120 \ldots 150$
ms	$95 \ldots 135$	$80 \ldots 200$	$80 \ldots 100$
ms	$80 \ldots 90$	$110 \ldots 130$	$125 \ldots 150$
ms	$100 \ldots 120$	$80 \ldots 100$	$80 \ldots 100$
ms	$80 \ldots 90$	$45 \ldots 80$	
		$80 \ldots 100$	$60 \ldots 90$
ms	$35 \ldots 75$	$50 \ldots 65$	$80 \ldots 100$
ms	$80 \ldots 90$	$80 \ldots 100$	$65 \ldots 80$
ms	$40 \ldots 60$	$10 \ldots 15$	$80 \ldots 100$
ms	$80 \ldots 90$		$10 \ldots 15$
ms	$10 \ldots 15$		

- Arcing time

Main circuits
AC capacity
Utilization category AC-1, switching resistive loads

- Rated operational currents I_{e}
- Rated power for AC loads ${ }^{2)}$
P.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$
- Minimum conductor cross-section for loads with I_{e}

At $40^{\circ} \mathrm{C}$ up to 690 V A At $60^{\circ} \mathrm{C}$ up to 690 V A At 1000 V A
At 230 V kW 400 V kW 500 V kW
690 V kW 1000 V kW
At $40^{\circ} \mathrm{C} \mathrm{mm}{ }^{2}$ At $60^{\circ} \mathrm{C} \mathrm{mm}{ }^{2}$ At $1 / / A C-1 \mathrm{~W}$

275	400	690
250	380	$650^{1)}$
100	150	250
95	145	245
165	250	430
205	315	535
285	430	740
165	247	410
2×70	240	2×240
120	240	2×240
20	27	55

Power loss per conducting path

Utilization category AC-2 and AC-3

for an electrical endurance of 1.3 million operating cycles

- Rated operational current I_{e}
- Rated power of slipring or squirrel-

Up to 690 V A
At 230 V kW 400 V kW
500 V kW
690 V kW

97	138	170
30	37	55
55	75	90
55	90	110
90	132	160

1) 600 A for $3 \mathrm{RT} 1476-\mathrm{N}$ contactor.
2) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up taken into account).

Contactors	Type Size		$\begin{aligned} & \text { 3RT14 } 56 \\ & \text { S6 } \end{aligned}$	$\begin{aligned} & \text { 3RT14 } 66 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT14 } 76 \\ & \text { S12 } \\ & \hline \end{aligned}$
Main circuit					
Load rating with DC					
Utilization category DC-1, switching resistive loads ($L / R \leq 1 \mathrm{~ms}$)					
- Rated operational currents $I_{\mathrm{e}}\left(\right.$ at $\left.60{ }^{\circ} \mathrm{C}\right)$					
- 1 conducting path	Up to 24 V 60 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ 18 \end{array}$	$\begin{array}{r} 380 \\ 380 \\ 33 \end{array}$	$\begin{array}{r} 500 \\ 500 \\ 33 \end{array}$
	$110 \mathrm{~V}$	A			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3.4 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 20 \\ & 3.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 380 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 500 \\ & 4 \\ & 2 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 11.5 \\ & 4 \end{aligned}$	$\begin{aligned} & 380 \\ & 11 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 500 \\ & 11 \\ & 5.2 \end{aligned}$
Utilization category DC-3/DC-5 Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)					
- Rated operational currents $I_{\mathrm{e}}\left(\right.$ at $60{ }^{\circ} \mathrm{C}$)					
- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 250 \\ & 7.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 380 \\ & 11 \\ & 3 \end{aligned}$	$\begin{aligned} & 500 \\ & 11 \\ & 3 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 0.6 \\ & 0.17 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.18 \\ & 0.125 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.18 \\ & 0.125 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 250 \\ & 1.4 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 380 \\ & 1.4 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 500 \\ & 1.4 \\ & 0.75 \end{aligned}$

Switching frequency
Switching frequency \boldsymbol{z} in operating cycles/hour

- Contactors without overload relays

No-load switching frequency
AC-1 h
600
Dependence of the switching fre-
quency z^{\prime} on the operational current
I^{\prime} and operational voltage U^{\prime}
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT14 Contactors for Switching Resistive Loads (AC-1)

3-pole, 140 ... 690 A

1) When connecting cable lugs according to DIN 46235 , use the 3RT19 56-4EA1 terminal cover for conductor cross-sections from $95 \mathrm{~mm}^{2}$ to ensure phase spacing.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

3) When connecting cable lugs to DIN 46234, the 3RT19 66-4EA1 terminal cover must be used for conductor cross-sections of $240 \mathrm{~mm}^{2}$ and more as well as DIN 46235 for conductor cross-sections of $185 \mathrm{~mm}^{2}$ and more to keep the phase clearance.
4) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT13 Contactors for Switching Resistive Loads (AC-1)

4-pole, 4 NO, 18 ... 140 A

Overview

AC and DC operation

EN 60947-4-1 (VDE 0660 Part 102).
The contactors are suitable for use in any climate. They are finger-safe according to EN 50274.
The accessories for the 3-pole SIRIUS contactors can also be used for the 4-pole versions.

Function

- Switching resistive loads
- Isolating systems with ungrounded or poorly grounded neutral conductors
- System transfers when alternative AC power supplies are used
- As contactors, e. g. for variable-speed operating mechanisms which only have to carry current and not switch
- The contactors are also suitable for switching mixed loads in distribution systems (e. g. for supplying heaters, lamps, motors, PC power supply units) with p.f. > 0.8 according to IEC 60947-4-1 test conditions for utilization category AC-1.

Integration

Mountable auxiliary contacts

Size S00

4 auxiliary contacts (according to EN 50005)

Size $\mathbf{S O}$

Maximum 2 auxiliary contacts (either laterally mounted or snapped onto the top).

Size S2 to S3

Max. 4 auxiliary contacts (either laterally mounted or snapped onto the top)

Contactor assembly with mechanical interlock

The 4-pole 3RT13 contactors with 4 NO contacts as the main contacts are suitable for making contactor assemblies with a mechanical interlock, e. g. for system transfers.

Size S00

Contactor assemblies can be constructed from two 3RT13 1. contactors in conjunction with mechanical interlocks and two connecting clips (Order No.: 3RA19 12-2H, pack with 10 interlock elements and 20 clips for 10 assemblies).

Size $\mathbf{S O}$

When constructing 4-pole contactor assemblies from two 3RT13 2. contactors, the fourth pole of the left contactor must always be moved to the left side. The contactor assembly can then be made easily with the aid of the 3RA19 24-1A mechanical interlock fitted onto the front and the 3RA19 22-2C mechanical connectors. The laterally mountable 3RA19 24-2B mechanical interlock can be used if the contactor assembly is mounted on a base plate.

Sizes S2 and S3

Contactor assemblies can be constructed from two 3RT13 3. or two 3RT13 4. contactors in conjunction with the laterally mountable 3RA19 24-2B mechanical interlock and the 3RA19 .2-2G mechanical connectors. The mechanical interlock for fitting onto the front cannot be used for size S2 and S3 contactors.

Technical specifications

Contactors	Type Size		3RT13 16 3RT13 17 S00	3RT13 25 3RT13 26 S0	$\begin{aligned} & \text { 3RT13 } 36 \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT13 } 44 \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT13 } 46 \\ & \text { S3 } \end{aligned}$
General data							
Permissible mounting position ${ }^{1)}$							
Mechanical endurance		Operating cycles	30 million	10 million			
Electrical endurance at $I_{\mathrm{e}} / \mathrm{AC-1}$		Operating cycles	Approx. 0.5 million				
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)		V	690				
Permissible ambient temperature	- During operation - During storage	$\begin{aligned} & \circ{ }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \\ & \hline \end{aligned}$				
Degree of protection Acc. to EN 60947-1, Appendix C	Device Connection range		IP20		$\begin{aligned} & \text { IP20 } \\ & \text { IP00 } \end{aligned}$		
Touch protection acc. to EN 50274			Finger-safe				
Short-circuit protection of contactors without overload relays							
Main circuit Fuse links, gL/gG operational class LV HRC, 3NA, DIAZED, 5SB, NEOZED, 5SE acc. to IEC 60947-4-1/ EN 60947-4-1	- Type of coordination "1"1) - Type of coordination "2"1) - Weld-free	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 63 \\ & 25 / 35 \\ & \\ & 16 \end{aligned}$	$\begin{aligned} & 160 \\ & 63 \\ & 50 \end{aligned}$	$\begin{aligned} & 250 \\ & 125 \\ & 63 \end{aligned}$	$\begin{aligned} & 250 \\ & 160 \\ & \\ & 100 \end{aligned}$
Control							
Magnetic coil operating range	AC at 50 Hz AC at 60 Hz DC at $50^{\circ} \mathrm{C}$ DC at $60^{\circ} \mathrm{C}$ AC/DC		$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{S}} \\ & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{s}} \end{aligned}$	$0.8 \ldots 1.1 \times U_{S}$			
Power consumption of the magnetic coils (when coil is cold and $1.0 \times U_{\mathrm{s}}$)							
- AC operation, 50 Hz	- Closing - P.f. - Closed - P.f.	VA VA VA VA		$\begin{aligned} & 61 \\ & 0.82 \\ & 7.8 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 145 \\ & 0.79 \\ & 12.5 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 270 \\ & 0.68 \\ & 22 \\ & 0.27 \end{aligned}$	
- AC operation, $50 / 60 \mathrm{~Hz}$	- Closing - P.f.	VA	$\begin{aligned} & 26.5 / 24.3 \\ & 0.79 / 0.75 \end{aligned}$	$\begin{aligned} & \text { 64/63 } \\ & 0.82 / 0.74 \end{aligned}$	$\begin{aligned} & 170 / 155 \\ & 0.76 / 0.72 \end{aligned}$	$\begin{aligned} & \text { 298/274 } \\ & 0.72 / 0.62 \end{aligned}$	
	- Closed - P.f.	VA	$\begin{aligned} & 4.4 / 3.4 \\ & 0.27 / 0.27 \end{aligned}$	$\begin{aligned} & 8.4 / 6.8 \\ & 0.24 / 0.28 \end{aligned}$	$\begin{aligned} & 15 / 11.8 \\ & 0.35 / 0.38 \end{aligned}$	$\begin{aligned} & 27 / 20 \\ & 0.29 / 0.31 \end{aligned}$	
- DC operation	- Closing = Closed	W	3.3	5.6	13.3	15	
Operating times for $0.8 \ldots 1.1 \times \mathbf{U}_{\mathrm{s}}{ }^{2)}$ Total break time $=$ Opening delay + Arcing time							
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 25 \ldots 100 \\ & 7 \ldots 10 \end{aligned}$	$\begin{aligned} & 30 \ldots 90 \\ & 13 \ldots . .40 \end{aligned}$	$\begin{aligned} & 50 \ldots 110 \\ & 15 \ldots 30 \end{aligned}$	$\begin{aligned} & 110 \ldots 200 \\ & 14 \ldots 20 \end{aligned}$	
- AC operation	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 8 \ldots 35 \\ & 4 \ldots 30 \end{aligned}$	$\begin{aligned} & 6 . . .30 \\ & 13 . . .25 \end{aligned}$	$\begin{aligned} & 4 \ldots 35 \\ & 10 \ldots 30 \end{aligned}$	$\begin{aligned} & 20 \ldots 50 \\ & 10 \ldots 25 \end{aligned}$	
- Arcing time		ms					

Main circuit

AC capacity

Utilization category AC-1, switching resistive loads

- Rated operational currents I_{e}
- Rated power for AC loads
P.f. $=0.95\left(\right.$ at $\left.40^{\circ} \mathrm{C}\right)$
- Minimum conductor cross-section for loads with I_{e}

At $40^{\circ} \mathrm{C}$, up to 690 V At $60^{\circ} \mathrm{C}$, up to 690 V

Utilization category AC-2 and AC-3

- Rated operational currents I_{e}
- Rated power of slipring or squirrel-cage motors at 50 Hz and 60 Hz
and 60 Hz
- Closing delay
g delay
Opening delay
25... 100
ms $\quad 8 \ldots 35$
ms $\quad 10 \ldots 15$
... 110 110 ... 200
4 ... 35 20 ... 50
10... 30 10 ... 25

1) In accordance with the corresponding 3-pole 3RT1 contactors.
2) With size SOO, DC operation: Operating times at $0.85 \ldots 1.1 \times U_{\mathrm{S}}$.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT13 Contactors for Switching Resistive Loads (AC-1)

4-pole, 4 NO, 18 ... 140 A

Contactors	Type	3RT13 16	3RT13 17	3RT13 25	3RT13 26
	Size	S00		S0	

Main circuit
Load rating with DC
Utilization category DC-1, switching resistive loads ($L / R \leq 1 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $40^{\circ} \mathrm{C}$)

-1 conducting path	Up to 24 V	A	18	22	35
	60 V	A	18	22	20
	110 V	A	2.1	2.1	4.5
	220 V	A	0.8	0.8	1
-2 conducting paths in series	440 V	A	0.6	0.6	0.4
	Up to 24 V	A	18	22	35
	60 V	A	18	22	35
	110 V	A	12	12	35
	220 V	A	1.6	1.6	5
-3 conducting paths in series	440 V	A	0.8	0.8	1
	Up to 24 V	A	18	22	35
	60 V	A	18	22	35
	110 V	A	18	22	35
-4 conducting paths in series	220 V	A	18	22	35
	440 V	A	1.3	1.3	2.9
	Up to 24 V	A	18	22	35
	60 V	A	18	22	35
	110 V	A	18	22	35
	220 V	A	18	22	35
	440 V	A	1.3	1.3	2.9

Utilization category DC-3/DC-5
Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $40^{\circ} \mathrm{C}$)

- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 18 \\ & 0.5 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.5 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 20 \\ & 5 \\ & 2.5 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	A	--	--	$\begin{aligned} & 1 \\ & 0.09 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 18 \\ & 5 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 20 \\ & 5 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 15 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	A	--	--	$\begin{aligned} & 3 \\ & 0.27 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 1.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 10 \\ & 0.6 \end{aligned}$
- 4 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 1.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 35 \\ & 0.6 \end{aligned}$
Maximum breaking current AC e. g for isolation of load distributions - $50 / 60 \mathrm{~Hz}$	400 V	A	72	96	200

Utilization category DC-3/DC-5
Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $40^{\circ} \mathrm{C}$)

- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 20 \\ & 6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 6.5 \\ & 2.5 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.15 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 45 \\ & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 5 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 7 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 7 \\ & 0.42 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 25 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 35 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 35 \\ & 0.8 \end{aligned}$
- 4 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 45 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 70 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 80 \\ & 0.8 \end{aligned}$
Maximum breaking current AC e. g for isolation of load distributions - $50 / 60 \mathrm{~Hz}$	400 V	A	400	520	760

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3TK1 Contactors for Switching Resistive Loads (AC-1)

4-pole, 4 NO, 200 ... 1000 A

Overview

EN 60947-4-1 (VDE 0660 Part 102)
The contactors also comply with the requirements of NFC 63-110 and NFC 20-040.

The contactors are suitable for use in any climate. They are finger-safe according to EN 50274. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices.
Magnetic coils for 3TK10 to 3TK13 contactors: as withdrawable coils.

Surge suppression
Control circuit
Magnetic coils for 3TK1 contactors: can be retrofitted with
RC elements.

Function

- Isolating systems with ungrounded or poorly grounded neutral conductors
- Switching resistive loads
- System transfers when alternative AC power supplies are used
- The contactors are also suitable for switching mixed loads in distribution systems (e. g for supplying heaters, lamps, motors, PC networks) with p.f. > 0.8 according to IEC 60947-4-1 test conditions for utilization category AC-1

Technical specifications

1) Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage $U^{\prime}: z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications

 3TK1 Contactors for Switching Resistive Loads (AC-1)
4-pole, 4 NO, 200 ... 1000 A

Contactors	Type		3TK10	3TK11	3 TK12	3 TK13	3TK14	3TK15	3 TK17
Conductor cross-sections									
Main conductors:			(1) Screw terminals						
- Stranded with cable lug - Solid or stranded	AWG	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{MCM} \end{aligned}$	$\begin{aligned} & 2 \times 70 \\ & 2 \times 00 \end{aligned}$	$\begin{aligned} & 2 \times 120 \\ & 2 \times 250 \end{aligned}$	$\begin{aligned} & 2 \times 120 \\ & 2 \times 250 \end{aligned}$		$\begin{array}{r} 2 \times 300 \\ 2 \times 600 \end{array}$		
- Connecting bar (max. width)		mm	30	30	33		55		
- Terminal screw			M6	M10	M10		M10		
- Tightening torque		Nm	5	16	16		16		
		lb.in	42	135	135		135		
Auxiliary conductors:									
- Solid - Finely stranded with end sleeve - Solid or stranded - Tightening torque	AWG	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{MCM} \\ & \mathrm{Nm} \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \\ & 2 \times(0.5 \\ & 20 \ldots 14 \\ & 1.2(10) \end{aligned}$	2.5) 2.5) .in)					

Overview

AC and DC operation

IEC 60947 (VDE 0660).
The contactors are suitable for use in any climate. The contactors with screw terminals are finger-safe according to EN 50274.
The contactors are available in versions with screw terminals, 6.3 mm plug-in terminals and solder pin connections for soldering in printed circuit boards.

Design

Auxiliary contacts

Contact reliability

To switch voltages $\leq 110 \mathrm{~V}$ and currents $\leq 100 \mathrm{~mA}$ the 3 TH 2 contactor relays should be used as they guarantee a high level of contact reliability.
These auxiliary contacts are suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of 17 V and higher.

Short-circuit protection of the contactors

For short-circuit protection of the contactors without overload relays see "Technical specifications".

Version

The 3TK2 contactors with 4 main contacts are available with screw terminals, $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ flat connectors and solder pin connectors.
The 3TK2 contactors with $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ flat connectors are coded can be used in the plug-in base with solder pin connections for printed circuit boards.

Technical specifications

	3TK20
Endurance of the main contacts	

The characteristic curves show the contact endurance of the contactors when switching inductive AC loads (AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i. e. not synchronized with the phase angle of the supply system. The rated operational current I_{e} complies with utilization category AC-4 (breaking six times the rated operational current) and is intended for a contact endurance of at least 200000 operating cycles. If a shorter endurance is sufficient, the rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4$ can be increased.
If the contacts are used for mixed operation, i. e. normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact endurance can be calculated approximately from the following equation:

$$
X=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}
$$

Characters in the equation:
$X=$ Contact endurance for mixed operation in operating cycles
$A=$ Contact endurance for normal operation $\left(I_{\mathrm{a}}=I_{\mathrm{e}}\right)$ in operating cycles
$B=$ Contact endurance for inching
($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles $C=$ Inching operations as a percentage of total switching operations

Diagram legend:

$P_{N}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3TK20 Contactors

4-pole, 4 kW

1) Applies to $50 / 60 \mathrm{~Hz}$ coil:

At $50 \mathrm{~Hz}, 1.1 \times U_{\mathrm{s}}$, side-by-side mounting and 100% ON period the max. ambient temperature is $+40^{\circ} \mathrm{C}$.
2) See page $3 / 114$
3) According to excerpt from IEC 60947-4-1 (VDE 0660 Part 102 Type of coordination "1"
Destruction of the contactor and the overload relay is permissible. The contactor and/or overload relay can be replaced if necessary.
Type of coordination "2":
The overload relay must not suffer any damage. Contact welding on the contactor is permissible, however, if the contacts can be easily separated.
${ }^{4)}$ A short-circuit current of $I_{\mathrm{q}} \leq 6 \mathrm{kA}$ applies to type of coordination "2".

Contactors			
Type			3TK20
Control			
Magnetic coil operating range ${ }^{1)}$			$0.8 \ldots 1.1 \times U_{S}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \boldsymbol{U}_{\mathbf{s}}$)			
Standard version:			
- AC operation, 50 Hz	Closing P.f. Closed P.f.	VA VA	15 0.41 6.8 0.42
- AC operation, 60 Hz	Closing P.f. Closed P.f.	VA VA	$\begin{aligned} & 14.4 \\ & 0.36 \\ & 6.1 \\ & 0.46 \end{aligned}$
- AC operation, $50 / 60 \mathrm{~Hz}{ }^{1)}$	Closing P.f. Closed P.f.	VA VA	$\begin{aligned} & 16.5 / 13.2 \\ & 0.43 / 0.38 \\ & 8.0 / 5.4 \\ & 0.48 / 0.42 \end{aligned}$
For USA and Canada:			
- AC operation, 50 Hz	Closing P.f. Closed P.f.	VA VA	$\begin{aligned} & 14.6 \\ & 0.38 \\ & 6.5 \\ & 0.40 \end{aligned}$
- AC operation, 60 Hz	Closing P.f. Closed P.f.	VA VA	$\begin{aligned} & 14.4 \\ & 0.30 \\ & 6.0 \\ & 0.44 \end{aligned}$
- DC operation	Closing = Closed	W	3
Permissible residual current of t	nic circuit ${ }^{2}$) (for 0 - AC operation - DC operation	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \leq 3 \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \\ & \leq 1 \times\left(230 \mathrm{~V} / \mathrm{s}_{\mathrm{s}}\right) \end{aligned}$
Operating times at $0.8 \ldots 1.1 \times \mathbf{U}_{\mathbf{s}}{ }^{3)}$ Total break time $=$ Opening delay + Arcing time			
Values apply with coil in cold state and at operating temperature for operating range			
- AC operation	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	5... 19 2 ... 22 To use the 3TK20 AC-operated contactor in reversing duty an additional dead interval of 50 ms is required along with an NC contact interlock.
- DC operation	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 16 \ldots 65 \\ & 2 \ldots 5 \end{aligned}$
- Arcing time		ms	10... 15
Operating times at $1.0 \times \mathrm{Us}^{3}{ }^{3)}$			
- AC operation - Dead interval	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	5 ... 18 3 ... 21 To use the 3TK20 AC-operated contactor in reversing duty an additional dead interval of 50 ms is required along with an NC contact interlock.
- DC operation	Closing delay Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 19 \ldots 31 \\ & 3 \ldots 4 \end{aligned}$
- Arcing time		ms	10... 15

1) Applies to $50 / 60 \mathrm{~Hz}$ coil:

At $50 \mathrm{~Hz}, 1.1 \times U_{\mathrm{s}}$, side-by-side mounting and 100% ON period the max. ambient temperature is $+40^{\circ} \mathrm{C}$.
2) The 3TX4 490-1J additional load module is recommended for higher residual currents (see Catalog LV 1).
3) The OFF-delay of the NO contacts and ON-delay of the NC contacts increase if the contactor coils are protected against voltage peaks (noise suppression diode 6 to 10 times, diode assemblies 2 to 6 times, varistor +2 to 5 ms).

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3TK20 Contactors

4-pole, 4 kW

Contactors	Type		3TK20 ..-0...	$\begin{aligned} & \text { 3TK20 ..-3..., } \\ & \text { 3TK20 .-6..., } \\ & \text { 3TK20 ..-7... } \end{aligned}$
Size 00				
Main circuit				
AC capacity				
Utilization category AC-1, switching resistive loads				
- Rated operational current I_{e} (at $40^{\circ} \mathrm{C}$)	Up to $400 / 380 \mathrm{~V}$ $690 / 660 \mathrm{~V}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	18
- Rated operational current I_{e} (at $55^{\circ} \mathrm{C}$)	$\begin{aligned} & 400 / 380 \mathrm{~V} \\ & 690 / 660 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	16
- Rated power of AC loads $\text { P.f. }=1$	$\begin{array}{r} \text { At } 230 / 220 \mathrm{~V} \\ 400 / 380 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 / 660 \mathrm{~V} \end{array}$	kW kW kW kW	$\begin{aligned} & 6.0 \\ & 10 \\ & 13 \\ & 17 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 10 \\ & 13 \end{aligned}$
- Minimum conductor cross-section for loads with I_{e}		mm^{2}	2.5	2.5
Utilization category AC-2 and AC-3				
- Rated operational current I_{e}	$\begin{array}{r} \text { Up to } 220 \mathrm{~V} \\ 230 \mathrm{~V} \\ 380 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & 9.0 \end{aligned}$
	$\begin{aligned} & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 8.4 \\ & 6.5 \\ & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 6.5 \\ & --- \end{aligned}$
- Rated power for motors with slipring or squirrel-cage rotors at 50 Hz and 60 Hz and	At 110 V 115 V 120 V	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.3 \end{aligned}$
	$\begin{aligned} & 127 \text { V } \\ & 200 \text { V } \\ & 220 \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.2 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.2 \\ & 2.4 \end{aligned}$
	$\begin{aligned} & 230 \mathrm{~V} \\ & 240 \mathrm{~V} \\ & 380 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.6 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.6 \\ & 4.0 \end{aligned}$
	$\begin{aligned} & 400 \mathrm{~V} \\ & 415 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 4.0 \end{aligned}$
	$\begin{aligned} & 460 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 575 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$
	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	--
Utilization category AC-4 (contact endurance approx. 200000 operating cycles at $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)				
- Rated operational current I_{e}	$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2.6 \\ & 1.8 \end{aligned}$	2.6
- Rated power for motors with squirrel-cage rotor at 50 and 60 Hz and	$\begin{array}{r} \text { At } 110 \mathrm{~V} \\ 115 \mathrm{~V} \\ 120 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.33 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.33 \\ & 0.35 \end{aligned}$
- Max. permissible rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4 \hat{=} I_{\mathrm{e}} / \mathrm{AC}-3$ up to 500 V , for reduced contact endurance and reduced switching frequency	$\begin{aligned} & 127 \text { V } \\ & 200 \text { V } \\ & 220 \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.58 \\ & 0.64 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.58 \\ & 0.64 \end{aligned}$
	$\begin{aligned} & 230 \mathrm{~V} \\ & 240 \mathrm{~V} \\ & 380 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.70 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.70 \\ & 1.10 \end{aligned}$
	$\begin{aligned} & 400 \mathrm{~V} \\ & 415 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.20 \\ & 1.27 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.20 \\ & 1.27 \end{aligned}$
	$\begin{aligned} & 460 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 575 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.45 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.45 \end{aligned}$
	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.15 \end{aligned}$	--

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3TK20 Contactors

4-pole, 4 kW

Contactors	Type	3TK20 ..-0...	$\begin{aligned} & \text { 3TK20 ..-3..., } \\ & \text { 3TK20 .-6..., } \\ & \text { 3TK20 ..-7... } \end{aligned}$
Size 00			

Main circuit
Load rating with DC
Utilization category DC-1, switching resistive loads
(contact endurance 0.1×10^{6} operating cycles; $L / R \leq 1 \mathrm{~ms}$)

- Rated operational current I_{e} (at $55^{\circ} \mathrm{C}$)

- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 / 240 \mathrm{~V} \end{array}$	A A A A	$\begin{aligned} & 16 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 / 240 \mathrm{~V} \end{array}$	A A A A	$\begin{aligned} & 16 \\ & 16 \\ & 6 \\ & 2 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 6 \\ & 2 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 / 240 \mathrm{~V} \\ \hline \end{array}$	A A A A	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 6 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 6 \end{aligned}$
Utilization category DC-3 and DC-5, shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)				
- Rated operational current I_{e} (at $55^{\circ} \mathrm{C}$) - 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 / 240 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 0.5 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 0.5 \\ & 0.1 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 / 240 \mathrm{~V} \end{array}$	A A A A	$\begin{aligned} & 10 \\ & 5 \\ & 2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 5 \\ & 2 \\ & 0.5 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 / 240 \mathrm{~V} \end{array}$	A A A A	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 2 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 2 \end{aligned}$
Thermal load capacity	10 s current	A	70	
Power loss per conducting path	At $I_{\mathrm{e}} /$ AC-3	W	0.3	

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour			
- Contactors without overload relays	No-load switching frequency	h^{-1}	10000
Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$	$\begin{aligned} & A C-1 \\ & A C-2 \\ & A C-3 \end{aligned}$	$\begin{aligned} & h^{-1} \\ & h^{-1} \\ & h^{-1} \end{aligned}$	$\begin{aligned} & 1000 \\ & 500 \\ & 1000 \end{aligned}$
- Contactors with overload relays (mean value)		h^{-1}	15
Conductor cross-sections			
Main and auxiliary conductors			(i) Screw terminals
- Solid		mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots 2.5), 1 \times 4 \\ & 2 \times(20 \ldots 14) \text { AWG, } 1 \times 12 \text { AWG } \end{aligned}$
- Finely stranded with end sleeve		mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots 1.5), \\ & 1 \times 2.5 \end{aligned}$
- Pin-end connector (DIN 46231) - Terminal screw		mm^{2}	$1 \times 1 \ldots 2.5$
- Prescribed tightening torque for terminal screws		Nm lb.in	$\begin{aligned} & 0.8 \ldots 1.3 \\ & 7 \ldots .11 \end{aligned}$
- When using a plug-in sleeve - Finely stranded			(0) Flat connectors
	6.3 ... 1	mm^{2}	0.5 ... 1
	6.3 ... 2.5	mm^{2}	$1 . .2 .5$
			1 Solder pin connections (only for printed circuit boards)

| Contactors | Type | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

© Siemens AG 2009
 3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT15 Contactors

4-pole, 2 NO + 2 NC, 4 ... 18.5 kW

Overview

AC and DC operation
EN 60947-4-1 (VDE 0660 Part 102).
The contactors are suitable for use in any climate. They are finger-safe according to EN 50274.
The accessories for the 3-pole SIRIUS contactors can also be used for the 4-pole versions.

Function

- Changing the polarity of hoisting gear motors
- Switching two separate loads

Note:
Single device for pole reversal; not suitable for reversing duty. 3RT15 contactors are not suitable for switching a load between two current sources.

Integration

Mountable auxiliary contacts
Size S00
4 auxiliary contacts (auxiliary switch blocks according to EN 50005)
Size SO
Maximum 2 auxiliary contacts (either laterally mounted or snapped onto the top auxiliary switch blocks according to EN 50012 and EN 50005).
Size S2
Maximum 4 auxiliary contacts (either laterally mounted or snapped onto the top auxiliary switch blocks to EN 50012 and EN 50005).

Technical specifications

| Contactors | Type |
| :--- | :--- | :--- | :--- | :--- |
| | Size |

1) In accordance with the corresponding 3-pole 3RT1 contactors.
2) With size $\mathrm{SOO}, \mathrm{DC}$ operation: operating times at $0.85 \ldots 1.1 \times U_{\mathrm{s}}$.

Contactors	Type Size		$\begin{aligned} & \text { 3RT15 } 16 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT15 } 17 \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT15 } 26 \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { 3RT15 } 35 \\ & \text { S2 } \end{aligned}$
Main circuit						
AC capacity						
Utilization category AC-1, switching resistive loads						
- Rated operational currents I_{e}		At $40^{\circ} \mathrm{C}$ up to 690 V A At $60^{\circ} \mathrm{C}$ up to 690 V A	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$
- Rated power for AC loads P.f. $=0.95$ (at $60^{\circ} \mathrm{C}$)		$\begin{array}{r} \text { At } 230 \mathrm{~V} \mathrm{~kW} \\ 400 \mathrm{~V} \mathrm{~kW} \end{array}$	$\begin{aligned} & 6.5 \\ & 11 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 13 \end{aligned}$	$\begin{aligned} & 15 \\ & 26 \end{aligned}$	$\begin{aligned} & 20 \\ & 36 \end{aligned}$
- Minimum conductor cross-section for loads with I_{e}		At $40{ }^{\circ} \mathrm{C} \mathrm{mm}{ }^{2}$	2.5	2.5	10	16
Utilization category AC-2 and AC-3						
- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)		Up to 400 V A	9	12	$25^{1)}$	40
- Rated power of slipring or squirrel-cage motors at 50 and 60 Hz		$\begin{array}{r} \text { At } 230 \vee \mathrm{~kW} \\ 400 \mathrm{VW} \end{array}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 11 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 18.5 \end{aligned}$

Load rating with DC
Utilization category DC-1, switching resistive load ($L / R \leq 1 \mathrm{~ms}$)

- Rated operational currents le (at $60^{\circ} \mathrm{C}$)

- 1 conducting path	Up to 24 V A	16	20	35	50
	60 V A	16	20	20	23
	110 V A	2.1	2.1	4.5	4.5
	220 V A	0.8	0.8	1	1
	440 V A	0.6	0.6	0.4	0.4
- 2 conducting paths in series	Up to 24 V A	16	20	35	50
	60 V A	16	20	35	45
	110 V A	12	12	35	45
	220 V A	1.6	1.6	5	5
	440 V A	0.8	0.8	1	1

Utilization category DC-3/DC-5 ${ }^{2)}$,
shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational currents le (at $60^{\circ} \mathrm{C}$)
- 1 conducting path
- 2 conducting paths in series

1) For AC operation: 25 A DC operation: 20 A .
2) For $U_{\mathrm{s}}>24 \mathrm{~V}$ the rated operational currents I_{e} for the NC contact conducting paths are 50% of the values for the NO contact conducting paths.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3RT16 Capacitor Contactors

12.5 ... 50 kvar

Overview

AC operation
IEC 60947, EN 60947 (VDE 0660)
The contactors are suitable for use in any climate. They are finger-safe according to EN 50274.
The 3RT16 capacitor contactors are special version of the size SOO to S3 SIRIUS contactors. The capacitors are precharged by means of the mounted leading NO contacts and resistors; only then do the main contacts close.
This prevents disturbances in the network and welding of the contactors.
Only discharged capacitors are permitted to be switched on with capacitor contactors.

The auxiliary switch block which is snapped onto the capacitor contactor contains the three leading NO contacts and in the case of SOO one standard NC contact and in the case of SO and S3 one standard NO contact, which is unassigned. Size SOO also contains another unassigned NO contact in the basic unit.
In addition, a 2-pole auxiliary switch block can be mounted laterally on the 3RT16 47 capacitor contactors (2 NO, 2 NC or 1 NO + 1 NC versions); Type 3RH19 21-1EA... The fitting of auxiliary switches for 3RT16 17 and 3RT16 27 is not expandable.
For the capacitor switching capacity of the basic 3RT10 contactor version, see "Technical specifications".

Technical specifications

All technical specifications not mentioned in the table below are identical to those of the 3RT10 17 contactors for size S00, to those of the 3RT10 26 contactors for size S0 and to those of the 3RT10 45 contactors for size S3.

1) $3 R V 1925-5 A B$ feeder terminal for $16 \mathrm{~mm}^{2}$.

2) If bars larger than $12 \times 10 \mathrm{~mm}$ are connected, a 3RT19 46-4EA1 terminal cover is needed to comply with the phase clearance.
3) When connecting conductors which are larger than $25 \mathrm{~mm}^{2}$, the 3RT19 46-4EA1 terminal cover must be used to keep the phase clearance.
4) Only with crimped cable lugs according to DIN 46234. Cable lug max. 20 mm wide.
5) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications Contactors with Extended Operating Range $0.7 \ldots 1.25 \times U_{\mathrm{S}}$, for Railway Applications

3RH11 contactor relays

Overview

DC operation
IEC 60947-4-1, EN 60947-4-1 (VDE 0660, Part 102), for requirements according to IEC 60077-1 and IEC 60077-2.

The contactor relays are finger-safe according to EN 50274. The size S00 contactor relays have Cage Clamp connections for all terminals.

Ambient temperature

The permissible ambient temperature for operation of the contactor relays (across the full magnetic coil operating range) is $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Uninterrupted duty at temperatures $>+60^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current-carrying capacity of the conducting paths and the switching frequency.

Function

Control and auxiliary circuits

The magnetic coils of the contactor relays have an extended operating range from 0.7 to $1.25 \times U_{S}$ and are fitted as standard with varistors to provide protection against overvoltage. The opening delay is consequently 2 to 5 ms longer than for standard contactors.

3RH11 ..-0LA0

The DC solenoid systems of the contactor relays are modified (to holding excitation) by means of a series resistor.
The size SOO contactor relays are supplied prewired with a plugon module containing the series resistor. The varistor is integrated. A 4-pole auxiliary switch block (according to EN 50005) can be fitted additionally.

Mounting

At ambient temperatures up to $70^{\circ} \mathrm{C}$, the size SOO contactor relays are allowed to be mounted side by side.

3RH11 22-2K. 40
These contactor relays have an extended operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$; the coils are fitted with varistors as standard. An additional series resistor is not required. Please note:

- Size S00: it is not possible to mount an auxiliary switch block.

At ambient temperatures $>60^{\circ} \mathrm{C} \leq 70^{\circ} \mathrm{C}$, a clearance of 10 mm is required when they are mounted side by side.

Technical specifications

Contactors	Type	3RH11 .	
Magnetic coil operating range	AC/DC	$0.7 \ldots 1.25 \times U_{\mathrm{S}}$	
Power consumption of the magnetic coils		For cold coil and $1.0 \times U_{\mathrm{S}}$	
\bullet Contactors with series resistor	- Closing	W	11
	Closed	W	4
	Contactors without series resistor	Closing	W
	- Closed	2.3	
Upright mounting position			3RH11 22-2K.40: please ask
		3RH11 22-2K.40-0LA0 standard version	

All specifications and technical specifications not mentioned
here are identical to those of the standard contactors.

Overview

3TH4 contactor relays

EN 60947-4-1.
For requirements according to IEC 60077-1 and IEC 60077-2.
The contactors are finger-safe according to EN 50274. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices.

Function

Control and auxiliary circuits

The magnetic coils of the contactors have an extended coil operating range from 0.7 to $1.25 \times U_{\mathrm{S}}$ and are fitted as standard with varistors to provide protection against overvoltage. The opening delay is consequently 2 ms to 5 ms longer than for standard contactors.
All specifications and technical specifications not mentioned here are identical to those of the standard 3TH4 contactor relays.

Ambient temperature

The permissible ambient temperature for operation of the contactors (across the full operating range of the magnetic coil) is -50 to $+70^{\circ} \mathrm{C}$. Uninterrupted duty at temperatures $<-25^{\circ} \mathrm{C}$ and $>+55^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current-carrying capacity of the conducting paths and the switching frequency.

Mounting

At ambient temperatures $>55^{\circ} \mathrm{C}$, a distance of 10 mm must be observed if contactor relays and size 1 and 2 contactors are mounted side by side. There is no need to reduce the technical specifications.

Technical specifications

1) Side-by-side mounting with 10 mm distance.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications Contactors with Extended Operating Range $0.7 \ldots 1.25 \mathrm{x} U_{\mathrm{S}}$, for Railway Applications

3RT10 motor contactors, 5.5 ... 45 kW

Overview

DC operation

IEC 60947-4-1, EN 60947-4-1 (VDE 0660, Part 102), for requirements according to IEC 60077-1 and IEC 60077-2.

The contactors are finger-safe according to EN 50274 (exception: series resistors S0 to S3). The contactors are available with both Cage Clamp and screw connection. The size SOO contactors have Cage Clamp terminals for all connections. The auxiliary conductor and coil terminals of sizes S0 to S3 are all Cage Clamp terminals.

Ambient temperature

The permissible ambient temperature for operation of the contactors (across the full magnetic coil operating range) is $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Uninterrupted duty at temperatures $>+60^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current-carrying capacity of the conducting paths and the switching frequency.

Dimensions

Attaching resistors increases the width of contactor sizes S0 to S3 (see "Dimensional Drawings").

Function

Control and auxiliary circuits

The magnetic coils of the contactors have an extended operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$ and are fitted as standard with varistors to provide protection against overvoltage. The opening delay is consequently 2 to 5 ms longer than for standard contactors.

3RT10 ..-OLA0

The DC solenoid systems of the contactors are modified (to holding excitation) by means of a series resistor.
The size SOO contactors are supplied prewired with a plug-on module containing the series resistor. The varistor is integrated. A 4-pole auxiliary switch block (according to EN 50005) can be fitted additionally.
The size S0 to S3 contactors are equipped on the front with an auxiliary switch block with $2 \mathrm{NO}+2 \mathrm{NC}$ contacts. The separate series resistor, which is attached laterally next to the contactor on the 35 mm standard mounting rail, is fitted with connecting cables for mounting onto contactors. A circuit diagram showing the terminals is stuck onto each contactor. One NC of the auxiliary contacts is required for the series resistor function. The selection and ordering data shows the number of additional, unassigned auxiliary contacts. It is only possible to extend the number of auxiliary contacts with size S00.

Mounting

At ambient temperatures up to $70^{\circ} \mathrm{C}$, the size SOO contactors and contactor relays are allowed to be mounted side by side. The resistor module of the size SO to S3 contactors must be mounted to the left of the contactor owing to the prefabricated connecting cables.

3RT10 17-2K.4.,
3RT10 2.-3K. 40
These contactors have an extended operating range from 0.7 to $1.25 \times U_{s}$; the coils are fitted with varistors as standard. An additional series resistor is not required. Please note:

- Size S00: it is not possible to mount an auxiliary switch block.
- Size SO: up to two single-pole auxiliary switch blocks can be mounted.

At ambient temperatures $>60^{\circ} \mathrm{C} \leq 70^{\circ} \mathrm{C}$, a clearance of 10 mm is required when they are mounted side by side.

3RT10 contactors with contactor control unit, extended operating range
 Control and auxiliary circuits

The magnetic coils of the contactors have an extended operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$ and are fitted as standard with varistors to provide protection against overvoltage. The opening delay is consequently 2 ms to 5 ms longer than for standard contactors.

3RT10 ..-.X.40-0LA2

The contactors are energized via upstream control electronics which ensure the coil operating range of 0.7 to $1.25 \times U_{\mathrm{S}}$ at an ambient temperature of $70^{\circ} \mathrm{C}$. They are supplied as complete units with a built-on contactor control unit. A varistor is integrated for damping opening surges in the coil.
The possibility of mounting auxiliary switches is the same as that for equivalent standard contactors.

Mounting
At ambient temperatures up to $70^{\circ} \mathrm{C}$, sizes SO to S 3 of these contactor versions are allowed to be mounted side by side.

Ambient temperature

The permissible ambient temperature for operation of the contactors (across the full operating range of the magnetic coil) is $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Uninterrupted duty at temperatures $>+60^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current-carrying capacity of the conducting paths and the switching frequency.

Dimensions

Because of the built-on contactor control unit, the height of the size S0 to S3 contactors increases by up to 34 mm
(see "Dimensional Drawings").

Technical specifications

Contactors	Type		3RT10 17	3RT10 2.	3RT10 3.	3RT10 4.
Magnetic coil operating range	AC/DC		$0.7 \ldots 1.25 \times U_{\text {s }}$			
Power consumption of the magnetic coils			For cold coil and	. $0 \times \mathrm{U}_{\text {s }}$		
- Contactors with series resistor	- Closing - Closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 11 \\ & 4 \end{aligned}$	$\begin{aligned} & 23 \\ & 7 \end{aligned}$	$\begin{aligned} & 46 \\ & 14 \end{aligned}$	$\begin{aligned} & 78 \\ & 23 \end{aligned}$
- Contactors without series resistor	- Closing - Closed	$\begin{aligned} & \text { W } \\ & w \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.2 \end{aligned}$	--	
Upright mounting position			Standard version	3RT10 2.-3K.40: Special version required 3RT10 2.- 3K.44-0LAO: Special version required	--	--

All specifications and technical specifications not mentioned
here are identical to those of the standard contactors.

Contactors			3RT10 2.	3RT10 3.	3RT10 4.
3RT10 contactors with contactor control unit					
Magnetic coil operating range			0.7 ... 1.25		
Power consumption			For cold coil		
	- Closing - Closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 6 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 15 \\ & 11 \end{aligned}$	$\begin{aligned} & 19 \\ & 12 \end{aligned}$
Upright mounting position			Special v	--	

All specifications and technical specifications not mentioned
here are identical to those of the standard contactors.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications Contactors with Extended Operating Range $0.7 \ldots 1.25 \times U_{\mathrm{s}}$, for Railway Applications

3TB5 motor contactors, $55 \ldots 200 \mathrm{~kW}$

Overview

EN 60947-4-1.
For requirements according to IEC 60077-1 and IEC 60077-2.
The contactors are finger-safe according to EN 50274. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices.

Function

Control and auxiliary circuits

The magnetic coils of the contactors have an extended coil operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$ and are fitted as standard with varistors to provide protection against overvoltage. The opening delay is consequently 2 ms to 5 ms longer than for standard contactors.
The DC solenoid systems of the 3TB contactors must be modified (to holding excitation) by means of a series resistor.
This series resistor is supplied separately packed with the contactors. With types 3TB50, the series resistor must be attached onto the right-hand side of the auxiliary switch block by means of the enclosed mounting parts and sets of links provided.

With types 3TB52/54/56, the series resistor must be attached separately next to the contactors. One NC of the auxiliary contacts is required for the series resistor function. The selection
and ordering data show the number of additional, unassigned auxiliary contacts. It is not possible to extend the number of auxiliary contacts.

With the 3TB52 and larger contactors, the series resistor must be connected using an additional K2 reversing contactor (3RT13 17-1F.40). This contactor is automatically included in the scope of supply in the same packaging as the contactor.
All specifications and technical specifications not mentioned here are identical to those of the standard 3TB contactors.

Ambient temperature

The permissible ambient temperature for operation of the contactors (across the full operating range of the magnetic coil) is -50 to $+70^{\circ} \mathrm{C}$. Uninterrupted duty at temperatures $<-25^{\circ} \mathrm{C}$ and $>+55^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current-carrying capacity of the conducting paths and the switching frequency.

Mounting

At ambient temperatures $>55^{\circ} \mathrm{C}$, a distance of 10 mm must be observed if contactor relays and size 1 and 2 contactors are mounted side by side. There is no need to reduce the technical specifications.

Dimensions

Attaching resistors and varistors increases the width of the contactors (see "Dimensional Drawings").

Technical specifications

Contactors Type		3TB50	3TB52	3TB54	3TB56
Magnetic coil operating range		$0.8 \ldots 1.1 \times U_{\text {s }}$			
Power consumption of the magnetic coils		For cold coil and $1.0 \times U_{S}$			
- Closing	W	38	40	190	295
- Closed	W	20	21	43	59

Overview

EN 60947-4-1.
For requirements according to IEC 60077-1 and IEC 60077-2.
The contactors are finger-safe according to EN 50274 (exception: series resistor). Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices.

Function

Control and auxiliary circuits

The magnetic coils of the contactors have an extended coil operating range from 0.7 to $1.25 \times U_{\mathrm{S}}$ and are fitted as standard with varistors to provide protection against overvoltage. The opening delay is consequently 2 ms to 5 ms longer than for standard contactors.

The DC solenoid systems of the 3TC contactors must be modified (to holding excitation) by means of a series resistor.

This series resistor is supplied separately packed with the contactors. With types 3TC48, the series resistor must be attached onto the right-hand side of the auxiliary switch block by means of the enclosed mounting parts and sets of links provided, while in the case of the 3TC44 it must be mounted and wired between the contactor poles. With types 3TC52/56, the series resistor must be attached separately next to the contactors. One NC of the auxiliary contacts is required for the series resistor function.

3TC contactors for switching DC voltage, 2-pole

The selection and ordering data show the number of additional, unassigned auxiliary contacts. It is not possible to extend the number of auxiliary contacts.
With the 3TC52 and larger contactors, the series resistor must be connected using an additional K2 reversing contactor (3RT13 17-1F.40). This contactor is automatically included in the scope of supply in the same packaging as the contactor.
All specifications and technical specifications not mentioned here are identical to those of the standard 3TC contactors.

Ambient temperature

The permissible ambient temperature for operation of the contactors (across the full operating range of the magnetic coil) is -50 to $+70^{\circ} \mathrm{C}$. Uninterrupted duty at temperatures $<-25^{\circ} \mathrm{C}$ and $>+55^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current-carrying capacity of the conducting paths and the switching frequency.

Mounting

At ambient temperatures $>55^{\circ} \mathrm{C}$, a distance of 10 mm must be observed if contactor relays and size 1 and 2 contactors are mounted side by side. There is no need to reduce the technical specifications.

Dimensions

Attaching resistors and varistors increases the width of the contactors (see "Dimensional Drawings").

Technical specifications

Contactors Type		$3 T C 44$	$3 \mathrm{TC48}$	3 TC52	3 TC56
Magnetic coil operating range		$0.7 \ldots 1.25 \times U_{\text {S }}$			
Power consumption of the magnetic coils		For cold coil and $1.0 \times U_{\text {S }}$			
- Closing	W	48	26	40	295
- Closed	W	13	14	21	59

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3TC Contactors for Switching DC Voltage

1- and 2-pole, 32 ... 400 A

Overview

3TC4 and 3TC5

EN 60947-4-1 (VDE 0660 Part 102).
The contactors are finger-safe according to EN 50274.
Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices.
The DC motor ratings given in the tables are applicable to the DC-3 and DC-5 utilization categories with two-pole switching of the load or with the two conducting paths of the contactor connected in series.

One contactor conducting path can switch full power up to 220 V . The ratings for higher voltages are available on request.

3TC7

EN 60947-4-1 (VDE 0660 Part 102).
The contactors are suitable for use in any climate. They are suitable for switching and controlling DC motors as well as all other DC loads. The electromagnetic excitation is designed for a particularly wide coil operating range.
It is between 0.7 or 0.8 to $1.2 \times U_{\mathrm{s}}$.
$3 T C 74$ contactors can be used at up to $750 \mathrm{~V} / 400 \mathrm{~A}$ and 50 Hz in AC-1 operation.

Technical specifications

For the rated data of the auxiliary contacts see page 3/126.

1) See the endurance diagram above.
2) For 3TC44, one NC contact each must be connected in series for the right and left auxiliary switch block respectively.

3RT, 3RH, 3TB, 3TC, 3TH, 3TK Contactors for Special Applications 3TC Contactors for Switching DC Voltage

1- and 2-pole, 32 ... 400 A

| Contactors | Type |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Size |

Switching frequency
Switching frequency \boldsymbol{z} in operating cycles/hour

For the rated data of the auxiliary contacts see page 3/126.
${ }^{1)}$ The opening delay times can increase if the contactor coils are damped against voltage peaks. Only 3TC44 contactors are allowed to be fitted with diodes.

For the rated data of the auxiliary contacts see page 3/126.

1) For endurance see page $3 / 127$.
2) See selection table in Catalog LV 1.

3RH1 contactor relays, 4- and 8-pole

Overview

The SIRIUS generation of controls is a complete, modular system family, logically designed right down to the last detail, from the basic units to the accessories.

Contactor relays and coupling relays
Size S00 with accessories

AC and DC operation

IEC 60947, EN 60947 (VDE 0660)
The 3RH1 contactor relays are suitable for use in any climate. They are finger-safe according to EN 50274.
The 3RH1 contactor relays have screw or Cage Clamp terminals. Four contacts are available in the basic unit.

(1) Contactor relay
(2) Coupling relay for auxiliary circuits
(3) Solid-state timing relay block, with ON-delay
(4) Solid-state timing relay block, with OFF-delay
(5) Auxiliary switch block, with solid-state time-delay (versions: ON or OFF-delay)
(6) 1-pole auxiliary switch block, cable entry from above
(7) 2-pole auxiliary switch block, cable entry from above
(8) 1-pole auxiliary switch block, cable entry from below
(9) 2-pole auxiliary switch block, cable entry from below
(10) 4-pole auxiliary switch block
(terminal designations according to EN 50011 or EN 50005)
(11) 2-pole auxiliary switch block, standard version or solid-state time-delay version (terminal designations according to EN 50005)
(12) Solder pin adapter for contactor relays with 4-pole auxiliary switch block
(13) Solder pin adapter for contactor relays and coupling relays
(14) Additional load module for increasing the permissible residual current
(15) Surge suppressor with LED
(16) Surge suppressor without LED

Function

Contact reliability

High contact stability at low voltages and currents, suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of 17 V .

Surge suppression

RC elements, varistors, diodes or diode assemblies (combination of a diode and a Zener diode) can be plugged onto all contactor relays from the front for damping opening surges in the coil. The plug-in direction is determined by a coding device.

Note:
The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are damped against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

Integration

Auxiliary switch blocks

The 3RH1 contactor relays can be expanded by up to four contacts by the addition of snap-on auxiliary switch blocks.

The auxiliary switch block can easily be snapped onto the front of the contactors. The auxiliary switch block has a centrally positioned release lever for disassembly.

The contactor relays with 4 contacts according to EN 50011, with the identification number 40E, can be extended with 80E to 44E auxiliary switch blocks to obtain contactor relays with 8 contacts according to EN 50011. The identification numbers 80 E to 44 E on the auxiliary switch blocks apply to the complete contactors. These auxiliary switch blocks (3RH19 11-1GA ..) cannot be combined with contactor relays with identification numbers 31E and 22E; they are coded.
All contactor relays with 4 contacts according to EN 50011, identification numbers 40 E to 22E, can be extended with auxiliary switch blocks 40 to 02 to obtain contactor relays with 6 or 8 contacts in accordance with EN 50005. The identification numbers on the auxiliary switch blocks apply only to the attached auxiliary switch blocks.

In addition, fully mounted 3RH12 8-pole contactor relays are available; the mounted 4 -pole auxiliary switch block in the 2nd tier is not removable.
The terminal designations comply with EN 50011. These versions are built in accordance with special Swiss regulations (SUVA) and are distinguished externally by a red labeling plate.

3RH1 contactor relays, 4- and 8-pole

Technical specifications

Contactors	Type	3RH1
	Size	$\mathbf{S 0 0}$

Permissible mounting position
The contactors are designed for operation • AC and DC operation
on a vertical mounting surface.

Upright mounting position (only for 3RH11/3RH12/3RH14)

- AC operation
- DC operation

Positively-driven operation of contacts in contactor relays

3RH1:

Yes, in the basic unit and the auxiliary switch block as well as between the
basic unit and the snap-on auxiliary switch block (removable) acc. to:

- ZH 1/457
- EN 60947-5-1, Appendix L

3RH12:

Yes, in the basic unit and the auxiliary switch block as well as between the basic unit and the snap-on auxiliary switch block (fixed) acc. to:

- ZH 1/457
- EN 60947-5-1, Appendix L
- SUVA

Note:
3RH19 11-. NF. solid-state compatible auxiliary switch blocks have no posi-

Contact reliability
Contact reliability at 17 V , 1 mA acc. to EN 60947-5-4

Special version required
Standard version (for coupling relays and contactor relays with extended operating range 3RH11 22-2K.40, please ask)

Explanations:
There is positively-driven operation if it is ensured that the NC and NO contacts cannot be closed at the same time.

ZH1/457

Safety rules for control units on power-operated presses in the metalworking industry.

EN 60947-5-1, Appendix L

Low-voltage controlgear, control equipment, and switching elements. Special requirements for positively-driven contacts

SUVA

Accident prevention regulations of the "Schweizer Unfallverhütungsanstalt" (Swiss Institute for Accident Insurance)

Contact endurance for AC-15/AC-14 and DC-13 utilization categories

The contact endurance is mainly dependent on the breaking current. It is assumed that the operating mechanisms are switched randomly, i. e. not synchronized with the phase angle of the supply system
If magnetic circuits other than the contactor coil systems or solenoid valves are present, e.g. magnetic brakes, protective measures for the load circuits are necessary.
RC elements and freewheel diodes would be suitable as protective measures.

The characteristic curves apply to:

- 3RH11, 3RH12 contactor relays
- 3RH14 latched contactor relays
- 3RH19 11 auxiliary switch blocks.

3RH, 3TH Contactor Relays

3RH1 contactor relays, 4-and 8-pole

For corresponding 8WA2 803/8WA2 804 opening tool, see
Catalog LV 1
An "insulation stop" must be used for conductor cross-sections
$\leq 1 \mathrm{~mm}^{2}$, see Catalog LV 1
Note:
Maximum external diameter of the conductor insulation: 3.6 mm

3RH1 contactor relays, 4- and 8-pole

Contactors	Type Size		$\begin{aligned} & \text { 3RH1. } \\ & \text { S00 } \end{aligned}$
Control			
Magnetic coil operating range			
- AC operation	At 50 Hz At 60 Hz		$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{s}} \end{aligned}$
- DC operation	$\begin{aligned} & \text { At }+50^{\circ} \mathrm{C} \\ & \text { At }+60^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{s}} \end{aligned}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{\mathrm{s}}$)			
- AC operation, 50 Hz	- Closing - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 27 / 0.8 \\ & 4.6 / 0.27 \end{aligned}$
- AC operation, 60 Hz	- Closing - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 24 / 0.75 \\ & 3.5 / 0.27 \end{aligned}$
- DC operation	- Closing = Closed	W	3.2
Permissible residual current of the electronics (with 0 signal)			
	- For AC operation ${ }^{1)}$ - For DC operation		$\begin{aligned} & <3 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \\ & <10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \end{aligned}$
Operating times ${ }^{2)}$ (Total break time $=$ OFF-delay + Arcing time)			
AC operation - Closing	Values apply with coil in cold state and at operating temperature for operating range		
- ON-delay of NO contact	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{s} \\ & 1.0 \times U_{s} \end{aligned}$ 3RH14 minimum operating time	ms ms ms	$\begin{aligned} & 8 \ldots 35 \\ & 10 \ldots 25 \\ & \geq 35 \end{aligned}$
- OFF-delay of NC contact	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 1.0 \times U_{\mathrm{s}} \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 6 \ldots 20 \\ & 7 \ldots 20 \end{aligned}$
- Opening			
- OFF-delay of NO contact	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 1.0 \times U_{\mathrm{s}} \end{aligned}$ 3RH14 minimum operating time	ms ms ms	$\begin{aligned} & 4 \ldots 30 \\ & 5 \ldots 30 \\ & \geq 30 \end{aligned}$
- ON-delay of NC contact	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 1.0 \times U_{\mathrm{s}} \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 5 \ldots 30 \\ & 7 \ldots 20 \end{aligned}$
DC operation			
- Closing			
- ON-delay of NO contact	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{s} \\ & 1.0 \times U_{s} \end{aligned}$ 3RH14 minimum operating time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 25 \ldots 100 \\ & 30 \ldots 50 \\ & \geq 100 \end{aligned}$
- OFF-delay of NC contact	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 1.0 \times U_{\mathrm{s}} \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 20 \ldots 90 \\ & 25 \ldots 45 \end{aligned}$
- Opening			
- OFF-delay of NO contact	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 1.0 \times U_{\mathrm{s}} \\ & \text { 3RH14 minimum operating time } \end{aligned}$	ms ms ms	$\begin{aligned} & 7 \ldots 10 \\ & 7 \ldots 9 \\ & \geq 30 \end{aligned}$
- ON-delay of NC contact	$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 1.0 \times U_{\mathrm{s}} \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 13 \ldots 16 \\ & 13 \ldots .15 \end{aligned}$
Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} :$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{i}\right)^{1.5} \cdot 1 / \mathrm{hy}$			

$Z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{i}\right)^{1.5} \cdot 1 / \mathrm{hy}$

1) The 3RT19 16-1GA00 additional load module is recommended for higher residual currents, see Catalog LV 1.
2) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attentuated against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

Contactors	Type Size		

3RH, 3TH Contactor Relays

3RH14 latched contactor relays, 4-pole

Overview

AC and DC operation
IEC 60947, EN 60947 (VDE 0660).
The terminal designations comply with EN 50011.
The contactor coil and the coil of the release solenoid are both designed for uninterrupted duty.
The number of auxiliary contacts can be extended by means of auxiliary switch blocks (up to 4 poles).

RC elements, varistors diodes or diode assemblies can be fitted to both coils from the front for damping opening surges in the coil.

The contactor relay can also be switched on and released manually (for minimum actuating times, see page 3/134).

3TH4 contactor relays, 8 - and 10-pole

Overview

AC and DC operation

IEC 60947 and EN 60947 (VDE 0660).
The 3TH42/3TH43 contactor relays are suitable for use in any climate. They are finger-safe according to EN 50274.

Terminal designations according to EN 50011

In terms of their terminal designations, identification numbers and identification letters, the 3TH42/3TH43 contactor relays conform to the standard EN 50011 for "Specific contactor relays".

Function

Contact reliability

High contact stability at low voltages and currents thanks to the use of moving double-break contacts, suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ for voltages at 17 V .

Make-before-break contacting

The 3TH42/3TH43 contactor relays are available in versions with make-before-break contacting (make-before-break between 1 NO and 1 NC).

The make-before-break time is approximately 1 ms . This is not sufficient to cause another contactor to close. If the make-be-fore-break conducting paths are connected in series, a fleeting contact element is created; the wiping time is approximately 1 ms .

Surge suppression

The 3TH42/3TH43 contactors can be equipped with RC elements, varistors, diodes or diode assemblies (combination of a diode and a Zener diode) for damping opening surges. The surge suppressors can be mounted directly on the coil (see "Accessories").
Note:
The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are damped against voltage peaks (noise suppression diode 6 to 10 times; diode assembly 2 to 6 times, varistor +2 to 5 ms).

Technical specifications

Positively-driven operation in contactor relays with 8 and 10 contacts

3TH42/3TH43:

Yes, the contactor relays comply with the conditions for positively-driven operation acc. to.

- ZH 1/457
- EN 60947-5-1, Appendix L
- SUVA

Explanations:
There is positively-driven operation if it is ensured that the NC and NO contacts cannot be closed at the same time.

ZH1/457

Safety rules for control units on power-operated presses in the metalworking industry.

EN 60947-5-1, Appendix L

Low-voltage controlgear, control equipment, and switching elements. Special requirements for positively-driven contacts

SUVA

Accident prevention regulations of the "Schweizer Unfallverhütungsanstalt" (Swiss Institute for Accident Insurance)

3TH4 contactor relays, 8 - and 10-pole

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

- ON-delay NC

15 ... 25
${ }^{1)}$ Coils for USA, Canada and Japan: $0.85 \ldots 1.1 U_{\mathrm{s}}$ at 60 Hz .
2) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attentuated against voltage peaks (noise suppression diode 6 to 9 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

3TH4 contactor relays, 8- and 10-pole

Overview

AC and DC operation

IEC 60947 (VDE 0660).
The terminal designations comply with EN 50011.

3TH2 contactor relays

The 3TH2 contactor relays are suitable for use in any climate. The contactor relays with screw terminals are finger-safe according to EN 50274.

3TH27 latched contactor relays

The contactor coil and the coil of the release solenoid are both designed for uninterrupted duty.
RC elements, varistors diodes or diode assemblies can be fitted to both coils from the front for damping opening surges in the coil.

The contactor relay can also be switched on and released manually.

Design

3TH2 contactor relays

Version

The 3TH20 contactors with 4 auxiliary contacts are available with SIGUT screw terminals, $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ flat connectors and solder pin connections

The contactors with $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ flat connectors can be used in the plug-in base with solder pin connections for printed circuit boards. The contactor relays are coded and the plug-in base is codable in order to ensure non-interchangeability.
The 3TH22 contactor relays with 8 integrated contacts are available with screw terminals. The terminal designations are according to EN 50011.

Contact reliability
High contact stability at low voltages and currents, suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of 17 V and higher.

Auxiliary switch blocks

The contactor relays with 4 contacts with screw terminals relays can be expanded by up to four contacts by the addition of snapon auxiliary switch blocks.

A cover (with unit labeling plate) must be removed from the front of the contactor for this purpose. The auxiliary switch block is then easy to mount. The auxiliary switch blocks can be removed again by unlocking them with a laterally arranged slide.
The contactor relays with screw terminals with 4 contacts according to EN 50011, with the identification number 40E, can be extended with 80E, $71 \mathrm{E}, 62 \mathrm{E}, 53 \mathrm{E}$ or 44 E auxiliary switch blocks to obtain contactor relays with 8 contacts according to EN 50011. The identification numbers $80 \mathrm{E}, 71 \mathrm{E}, 62 \mathrm{E}, 53 \mathrm{E}$ or 44 E on the coded auxiliary switch blocks apply to the complete contactors (see graphic on the right). These auxiliary switch blocks cannot be combined with contactor relays with identification number 31E and 33 E .

All contactor relays with screw terminals with 4 contacts according to EN 50011, identification number 40E, 31E or 22E, can be extended with auxiliary switch blocks with identification number $40,31,22,20,11$ or 02 to obtain contactor relays with 6 or 8 contacts according to EN 50005. The identification numbers on the auxiliary switch blocks apply only to the attached auxiliary switch blocks (see the graphic on the right).

3TH2 contactor relays, 4- and 8-pole

3TH20 ..-0 contactor relays
Terminal designations according to EN 50011 and EN 50005

Surge suppression

RC elements, varistors, diodes or diode assemblies (combination of a diode and a Zener diode for short break times) can be plugged onto all contactors and auxiliary switch blocks with screw terminals from the front in order to damp opening surges in the coil. The unit labeling plate must be removed for this purpose.

It can be snapped onto the attached surge suppressor.

Residual current

The 3TX4 490-1J additional load module (see "Accessories") can be used by programmable logic controllers to increase the permissible residual current and to limit the residual voltage of semiconductor outputs.
This module ensures the safe opening of 3TH2/3TF2 contactors with direct control through 230 V AC semiconductor outputs. It is accommodated in the same enclosure as the 3TX4 490-3. surge suppressors and can be plugged into the contactor.

3TH2 contactor relays, 4- and 8-pole

Technical specifications

Contactor relays
Contact endurance for AC-15/AC-14 and
DC-13 utilization categories

The contact endurance is mainly dependent on the breaking current. It is assumed that the operating mechanisms are switched randomly, i. e. not synchronized with the phase angle of the supply system.
If magnetic circuits other than the contactor coil systems or solenoid valves are present, e.g. magnetic brakes, protective measures for the load circuits are necessary. RC elements and freewheel diodes would be suitable as protective measures. Diagram legend:
$I_{\mathrm{e}}=$ Rated operational current
$I_{\mathrm{a}}=$ Breaking current

1) Applies to $50 / 60 \mathrm{~Hz}$ coil

Operating range at $60 \mathrm{~Hz}: 0.85 \ldots 1.1 \times U_{\mathrm{S}}$;
at $50 \mathrm{~Hz}, 1.1 \times U_{\mathrm{s}}$, side-by-side mounting and 100% ON period the max. ambient temperature is $+40^{\circ} \mathrm{C}$.
2) For conductor cross-sections see page $3 / 144$

3TH2 contactor relays, 4- and 8-pole

Contactor relays	Type		3TH2
Short-circuit protection			
LV HRC 3NA, DIAZED 5SB, NEOZED 5SE Weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$		A	6
Control			
Magnetic coil operating range ${ }^{1 \text { 1) }}$			$0.8 \ldots 1.1 \times U_{s}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times U_{s}$)			
- AC operation, 50 Hz	Closing P.f. Closed P.f.	VA VA	$\begin{aligned} & 15 \\ & 0.41 \\ & 6.8 \\ & 0.42 \end{aligned}$
- AC operation, 60 Hz	Closing P.f. Closed P.f.	VA VA	$\begin{aligned} & 14.4 \\ & 0.36 \\ & 6.1 \\ & 0.46 \end{aligned}$
- AC operation, $50 / 60 \mathrm{~Hz}^{1)}$	Closing P.f. Closed P.f.	VA VA	$\begin{aligned} & 16.5 / 13.2 \\ & 0.43 / 0.38 \\ & 8.0 / 5.4 \\ & 0.48 / 0.42 \end{aligned}$
- DC operation	Closing = Closed	W	3
Permissible residual current of the elect	onics (with 0 signal) AC operation DC operation	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \leq 3 \times\left(220 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \\ & \leq 1 \times\left(220 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \end{aligned}$
Operating times at $0.8 \ldots 1.1 \times \mathbf{U S}^{2}{ }^{2}$ Total break time $=$ Opening delay + Arcing time			
Values apply with coil in cold state and at operating temperature for operating range			
- AC operation			
- Closing	ON-delay NO OFF-delay NC	ms	$\begin{aligned} & 5 \ldots 20 \\ & 4 \ldots 12 \end{aligned}$
- Opening	OFF-delay NO ON-delay NC	ms	$\begin{aligned} & 3 \ldots 24 \\ & 3 \ldots 20 \end{aligned}$
- DC operation			
- Closing	ON-delay NO OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 16 \ldots 140 \\ & 13 \ldots 40 \end{aligned}$
- Opening	OFF-delay NO ON-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 3 \ldots 6 \\ & 4 \ldots 10 \end{aligned}$
- Arcing time		ms	10
Operating times at $1.0 \times \mathrm{U}_{\mathrm{s}}{ }^{2)}$			
- Closing	ON-delay NO OFF-delay NC	ms ms	$\begin{aligned} & 6 \ldots 17 \\ & 5 \ldots 12 \end{aligned}$
- Opening	OFF-delay NO ON-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 3 \ldots 24 \\ & 5 \ldots 20 \end{aligned}$
- DC operation			
- Closing	ON-delay NO OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 18 \ldots 42 \\ & 15 \ldots 26 \end{aligned}$
- Opening	OFF-delay NO ON-delay NC	ms ms	$\begin{aligned} & 3 \ldots 5 \\ & 4 \ldots 10 \end{aligned}$
Main circuit			
AC capacity Utilization category AC-12 Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)		A	10
Utilization category AC-15 and AC-14 Rated operational current I_{e} for rated operational voltage U_{e}	$\begin{aligned} & 230 / 220 \mathrm{~V} \\ & 400 / 380 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 690 / 660 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$

1) Applies to $50 / 60 \mathrm{~Hz}$ coil

Operating range at $60 \mathrm{~Hz}: 0.85 \ldots 1.1 \times U_{\mathrm{s}}$;
at $50 \mathrm{~Hz}, 1.1 \times U_{\mathrm{s}}$, side-by-side mounting and 100% ON period the max. ambient temperature is $+40^{\circ} \mathrm{C}$
2) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attentuated against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

3TH2 contactor relays, 4- and 8-pole

Contactor relays	Type			3TH2
Main circuit				
Load rating with DC				
Utilization category DC-12 Rated operational current I_{e} for rated operational voltage U_{e}			A	10
- 1 conducting path ${ }^{1)}$		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 240 / 220 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 1.1 \\ & 0.5 \end{aligned}$
- 2 conducting paths in series		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 240 / 220 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 4 \\ & 2 \end{aligned}$
- 3 conducting paths in series		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 240 / 220 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 6 \\ & 2.5 \end{aligned}$
Utilization category DC-13 Rated operational current I_{e} for rated operational voltage U_{e}				
- 1 conducting path		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 240 / 220 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2.1 \\ & 0.9 \\ & 0.52 \\ & 0.27 \end{aligned}$
- 2 conducting paths in series		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 240 / 220 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 3.5 \\ & 1.3 \\ & 0.9 \end{aligned}$
- 3 conducting paths in series		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 240 / 220 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 4.7 \\ & 3 \\ & 1.2 \end{aligned}$
Induction motors				
Rated power of induction motors Acc. to utilization category AC-2 and AC-3	$\begin{aligned} & 110 \mathrm{~V} \\ & 230 / 220 \mathrm{~V} \\ & 400 / 380 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 690 / 660 \mathrm{~V} \end{aligned}$		kW kW kW kW kW	$\begin{aligned} & 0.2 \\ & 0.55 \\ & 1.1 \\ & 1.5 \\ & 1.5 \end{aligned}$
Switching frequency				
Switching frequency \mathbf{z} in operating cycles/hour Rated operation for utilization category				
Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$ No-load switching frequency	$\begin{aligned} & \text { AC-12/DC-12 } \\ & \text { AC-2 } \\ & \text { AC-3 } \\ & \text { AC-15/AC-14 } \\ & \text { DC-13 } \end{aligned}$		$\begin{aligned} & \mathrm{h}^{-1} \\ & \\ & \mathrm{~h}^{-1} \end{aligned}$	$\begin{aligned} & 1000 \\ & \\ & 500 \\ & 1000 \\ & 1200 \\ & 1200 \\ & 10000 \end{aligned}$
Conductor cross-sections				
Main and auxiliary conductors				(1) Screw terminals
- Solid - Finely stranded with end sleeve - Terminal screw			$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times\left(\begin{array}{lll} 0.5 \ldots 2.5) \\ 2 \times(0.5 \ldots & 1.5 \end{array}\right) \\ & \text { M3 } \end{aligned}$
				(0) Flat connectors
- Finely stranded When using a plug-in sleeve	$\begin{aligned} & -6.3 \ldots 1 \\ & -6.3 \ldots 2.5 \end{aligned}$		$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{lll} 0.5 \ldots 1 \\ 1 \ldots . . & 2.5 \end{array}$
				$\square \begin{aligned} & \text { Solder pin connections } \\ & \text { (only for printed circuit boards) }\end{aligned}$

[^8]
3RH, 3TH Contactor Relays

3RH11 coupling relays for switching
 auxiliary circuits, 4-pole

Application

DC operation
IEC 60947 and EN 60947 (VDE 0660).
The 3RH11 coupling relays for switching auxiliary circuits are tailored to the special requirements of working with electronic controls.
The 3RH11 coupling relays cannot be extended with auxiliary switch blocks.

Function

No auxiliary switch blocks can be snapped onto 3RH11 coupling relays.
Coupling relays have a low power consumption, an extended magnetic coil operating range and an integrated surge suppressor for damping opening surges
(exceptions: 3RH11 ..-.HB40 and 3RH11 ..-.MB4.-OKTO).

Technical specifications
All technical specifications not mentioned in the table below are identical to those of the 3RH11 contactor relays (see page $3 / 132$).
The size SOO coupling relays (3RH11) cannot be extended with auxiliary switch blocks.

Contactor type Size		$\begin{aligned} & \text { 3RH11HB40 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH11JB40 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH11 ..-. KB40 } \\ & \text { S00 } \end{aligned}$
Magnetic coil operating range		$0.7 \ldots 1.25 \times U_{S}$		
Power consumption of the magnetic coil (for cold coil) Closing = Closed At $U_{\mathrm{S}}=17 \mathrm{~V}$ At $U_{S}=24 \mathrm{~V}$ At $U_{S}=30 \mathrm{~V}$	$\begin{aligned} & W \\ & W \\ & W \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.3 \\ & 3.6 \\ & \hline \end{aligned}$		
Permissible residual current Of the electronics for 0 signal		$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$		
Overvoltage configuration of the magnetic coil		No overvoltage damping	With diode Δ	With varistor
Operating times				
- Closing at 17 V ON-delay NO OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 40 \ldots 120 \\ & 30 \ldots 70 \end{aligned}$		
- At 24 V - ON-delay NO - OFF-delay NC	ms ms	$\begin{aligned} & 30 \ldots 60 \\ & 20 \ldots .40 \end{aligned}$		
- At 30 V - ON-delay NO - OFF-delay NC	ms ms	$\begin{aligned} & 20 \ldots 50 \\ & 15 \ldots 30 \end{aligned}$		
- Closing at $17 \ldots 30 \mathrm{~V}$ - OFF-delay NO - ON-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 7 \ldots 17 \\ & 22 \ldots 30 \end{aligned}$	$\begin{aligned} & 40 \ldots 60 \\ & 60 \ldots 70 \end{aligned}$	$\begin{aligned} & 7 \ldots 17 \\ & 22 \ldots 30 \end{aligned}$
Upright mounting position		Request required		
Contactor type Size		$\begin{aligned} & \text { 3RH11 ..-.MB40-0KT0 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH11VB40 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH11WB40 } \\ & \text { S00 } \end{aligned}$
Magnetic coil operating range		$0.85 \ldots 1.85 \times U_{S}$		
Power consumption of the magnetic coil (for cold coil) Closing = Closed at $U_{\mathrm{S}}=24 \mathrm{~V}$	W	1.4		
Permissible residual current Of the electronics for 0 signal		$<8 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$		
Overvoltage configuration of the magnetic coil		Diode, varistor or RC element, attachable	Built-in diode	Built-in varistor
Operating times of the coupling relays				
- Closing at 20.5 V - OFF-delay - ON-delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 110 \ldots 20 \\ & 120 \ldots 30 \end{aligned}$		
- At 24 V - ON-delay NO - OFF-delay NC	ms	$\begin{aligned} & 25 \ldots 90 \\ & 15 \ldots 80 \end{aligned}$		
- At 44 V - OFF-delay - ON-delay	ms ms	$\begin{aligned} & 50 \ldots 10 \\ & 60 \ldots 15 \end{aligned}$		
- Closing at $17 \ldots 30 \mathrm{~V}$ - OFF-delay NO - ON-delay NC	ms ms	$\begin{aligned} & 5 \ldots 20 \\ & 10 \ldots 30 \end{aligned}$	$\begin{array}{r} 20 \ldots 80 \\ 30 \ldots 90 \\ \hline \end{array}$	$\begin{aligned} & 5 \ldots 20 \\ & 10 \ldots 30 \\ & \hline \end{aligned}$
Upright mounting position		Request required		

3RT10 coupling relays (interface),

3-pole, 3 ... 11 kW

Application

DC operation

IEC 60947, EN 60947 (VDE 0660).
The 3RT10 coupling relays for switching motors are tailored to the special requirements of working with electronic controls.
The 3RT10 1. coupling relays cannot be extended with auxiliary switch blocks.

Two single-pole auxiliary switch blocks can be fitted to the 3RT10 2. coupling relays.

Function

Coupling relays have a low power consumption, an extended operating range of the magnetic coil and an integrated surge suppressor for damping opening surges (exceptions: 3RT10 1.-1HB4. and 3RT10 1.-.MB4.-OKT0).

Technical specifications

All technical specifications not mentioned in the table below are identical to
those of the 3RT10 contactors for switching motors (see page 3/20).
The 3RT10 1. coupling relays cannot be extended with auxiliary switch blocks.
Two single-pole auxiliary switch blocks can be fitted to the 3RT10 2. coupling relays (see "Accessories").

Contactors	Type Size			$\begin{aligned} & \text { 3RT10 1.-.HB4. } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 1.-.JB4. } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 1.-.KB4. } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT10 2.-.KB4. } \\ & \text { S0 } \end{aligned}$
General data							
Mechanical endurance			Operating cycles	30 million			10 million
Protective separation between the coil and the main contacts acc. to EN 60947-1, Appendix N				400			
Control							
Magnetic coil operating range				$0.7 \ldots 1.25 \times U_{S}$			
Power consumption of the At $U_{\mathrm{s}} 17 \mathrm{~V} \mathrm{~W}$ magnetic coil 24 VW (for cold coil) 30 VW Closing = Closed				$\begin{aligned} & 1.2 \\ & 2.3 \\ & 3.6 \end{aligned}$			$\begin{aligned} & 2.1 \\ & 4.2 \\ & 6.6 \end{aligned}$
Permissible residual current Of the electronics (for 0 signal)				$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{S}}\right)$			$<6 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$
Overvoltage configuration of the magnetic coil				No overvoltage damping	With diode \forall	With varistor	With varistor
Operating times of the coupling relays							
- Closing							
- At 17 V	ON-delay NO OFF-delay NC		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$40 \text {... } 120$			$\begin{aligned} & 93 \ldots 270 \\ & 83 \ldots 250 \end{aligned}$
- At 24 V	ON-delay NO OFF-delay NC		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 30 \ldots 60 \\ & 20 \ldots 40 \end{aligned}$			$\begin{aligned} & 64 \ldots 87 \\ & 55 \ldots 78 \end{aligned}$
- At 30 V	ON-delay NO OFF-delay NC		ms ms	$\begin{aligned} & 20 \ldots 50 \\ & 15 \ldots 30 \end{aligned}$			$\begin{aligned} & 53 \ldots 64 \\ & 45 \ldots 56 \end{aligned}$
- Opening at $17 . . .30 \mathrm{~V}$	OFF-delay NO ON-delay NC		ms ms	$\begin{aligned} & 7 \ldots 17 \\ & 22 \ldots 30 \end{aligned}$	$\begin{aligned} & 40 \ldots 60 \\ & 60 \ldots 70 \end{aligned}$	$\begin{aligned} & 7 \ldots 17 \\ & 22 \ldots 30 \end{aligned}$	$\begin{array}{lll} 18 \ldots . & 19 \\ 24 \ldots & \ldots 5 \end{array}$

All technical specifications not mentioned in the table below are identical to those of the 3RT10 contactors for switching motors (see page 3/20).
The 3RT10 1. coupling relays cannot be extended with auxiliary switch blocks. Power consumption of the coils 1.4 W at 24 V .

3TX7, 3RS18 Coupling Relays 3TX7 Coupling Relays, Narrow Design

Relay couplers

Design

Installation instructions

Snap-on mounting is possible on horizontal and vertical standard mounting rails. In the case of vertical standard mounting rails and closely mounted units, the maximum permissible ambient temperature $T_{\mathrm{u}}=40^{\circ} \mathrm{C}$. Any service position is possible.

If the coupling elements are operated continuously 24 hours per day (100% ON period) at the maximum permissible rated control supply voltage and the maximum permissible ambient temperature, it is recommended that no similar equipment or other units that generate heat are placed directly adjoining the coupling elements because this can reduce the endurance of the couplers.

A distance > 10 mm to the right and left of the coupling link reduces the risk of a premature failure under these operating conditions.

Function

Surge suppression

The coupling links have been tested with 1×10^{5} operating cycles at AC-15 operation with the values specified in the Technical specifications.
If inductive loads are connected in parallel, the endurance of the relay couplers can be increased.

Note:
If capacitive loads without series resistors are switched, which limit temporary peak currents, microscopic welding of the relay contacts may result.

Connecting a cable to the spring-type terminals

Technical specifications

Type		3TX7 002/3TX7 003
General data		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (degree of pollution 3)	V	300
Protective separation for relay couplers ${ }^{1)}$ Between the coil and the contacts acc. to EN 60947-1, Appendix N	V	Up to 300 AC
Degree of protection $\quad \bullet$ Connections for relay couplers		$\begin{aligned} & \hline \text { IP20 } \\ & \text { IP30 } \end{aligned}$
Short-circuit protection acc. to IEC 60947-5-1 (weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) Fuse links, gL/gG operational class	A	4
Permissible ambient temperature • During operation D During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+80 \\ & \hline \end{aligned}$
Conductor cross-sections		
		(1) Screw terminals
- Solid - Finely stranded with or without end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times(0.25 \ldots 4) \\ & 1 \times(0.5 \ldots 2.5) \end{aligned}$
- Terminal screw		M3
Corresponding opening tool		Screwdriver, $3.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ (8WA2 804)
For 3TX7 003:		Spring-type terminals
- Solid or finely stranded - Finely stranded with end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times(0.08 \ldots \\ & 1 \times(0.25 \ldots \\ & 1.5) \end{aligned}$
Corresponding opening tool		Screwdriver, $3.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ (8WA2 803)

1) For 3 TX7 00.-1FB02, no protective separation according to EN 61140 .

Type		3TX7 002/3TX7 003
Load side		
Rated currents ${ }^{1)}$		
Continuous thermal current $I_{\text {th }}$	A	6
Rated operational currents I_{e}		
Acc. to utilization categories (EN 60947) (3TX7 002-1CB00: AC-15, $I_{\mathrm{e}}=2 \mathrm{~A}$)		
- AC-15 - At 24 V - At 110 V - At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$
- DC-13 - At 24 V - At 110 V - At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Switching current With resistive load to VDE 0435 (relay standard) and EN 60947		
- AC-12 - At 24 V - At 110 V - At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$
- DC-12 - At 24 V - At 110 V - At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 0.2 \\ & 0.2 \end{aligned}$
Switching voltage AC/DC	V	$24 . .250$
- Min. contact load for 3TX7 00.-... 02	mA	$1 \mathrm{~V}, 0.1$ AC/DC
Mechanical endurance	Operating cycles	20×10^{6}
Electrical endurance at I_{e}	Operating cycles	1×10^{5}
Switching frequency	Operating cycles 1/h	5000
Contact material for 3TX7 00.-... 02		Ag/Ni 0.15 hard gold-plated
Power limit hard gold-plating for 3TX7 00.-... 02 - Voltage - Current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$

${ }^{1)}$ Capacitive loads can result in micro-weldings on the contacts.
Note:
If inductive loads are connected in parallel, the endurance of the
relay couplers can be increased.

3TX7, 3RS18 Coupling Relays 3TX7 Coupling Relays, Narrow Design

Relay couplers

Type			$3 T X 7$ 00.-1A/-1B/-1C/-1G/-1H/-1L 3TX7 00.-.M	
Load side				
Rated operational currents $I_{\mathrm{e}}{ }^{1)}$ - Continuous thermal current $I_{\text {th }}$ - Rated operational current I_{e} acc. to utilization categories (EN 60947)				
$-A C-15$	At 24 V At 110 V At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$
- DC-13	At 24 V At 110 V At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$	
Switching current with resistive load to VDE 0435 (relay standard) and VDE 0660				
- AC-12	At 24 V At 110 V At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	
- DC-12	At 24 V At 110 V At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 0.3 \\ & 0.2 \end{aligned}$	
Power limit for hard gold-plating	- Voltage - Current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	
Switching voltage	AC/DC	V	17 ... 250	
Min. switching voItage (reliability 1 ppm$)^{2)}$ - Standard contact - Hard gold-plated contacts			$\begin{aligned} & 17 \mathrm{~V} \mathrm{DC/5} \mathrm{~mA} \\ & 5 \mathrm{~V} \mathrm{DC/1} \mathrm{~mA} \end{aligned}$	
Endurance	- Mechanical - Electrical (at I_{e})	Operating cycles Operating cycles	$\begin{aligned} & 20 \times 10^{6} \\ & 1 \times 10^{6} \end{aligned}$	0.5×10^{6}
Switching frequency		Operating cycles $1 / \mathrm{h}$	5000	
1) Capacitive loads can result in mi 2) $1 \mathrm{ppm}=1$ st fault in one million op	-weldings on the co ating cycles.			

Note:

If inductive loads are connected in parallel, the endurance of the relay couplers can be increased

3TX7, 3RS18 Coupling Relays 3TX7 Coupling Relays, Narrow Design

Relay couplers with plug-in design

Design

Coupling links are used to connect signals to and from a PLC. The plug-in relays enable the relay to be replaced at the end of its service life without detaching the wiring.

For easy linking of the signals, each terminal can be jumpered using an external connecting comb.

Technical specifications

Type		3TX7 01.-1
General data		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (degree of pollution 2)	V	300
Protective separation Between the coil and the contacts acc. to EN 60947-1, Appendix N	V	Up to 300 AC
$\begin{array}{ll}\text { Degree of protection } & \bullet \text { Enclosure } \\ & \bullet \text { Relays }\end{array}$		$\begin{aligned} & \hline \text { IP20 } \\ & \text { IP40 } \\ & \hline \end{aligned}$
Short-circuit protection acc. to IEC 60947-5-1 (weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) Fuse links, gL/gG operational class	A	4
Permissible ambient temperature $\begin{aligned} & \text { - During operation } \\ & \\ & \text { - During storage }\end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \\ & -40 \ldots+80 \end{aligned}$

- Solid
- Finely stranded with or without end sleeve
- Terminal screw

Permissible opening tool

Type		3TX7 01.-1.H	3TX7 01.-1.B	3TX7 01.-1.E	$3 T X 7$ 01.-1.F
Control side					
Operating range		$0.9 \ldots 1.1 U_{\text {S }}$	$0.7 \ldots 1.25 \mathrm{U}_{\mathrm{s}}$	0.8 ... 1.1 Us	$0.8 \ldots 1.1 U_{\text {s }}$
Power consumption at $U_{\text {S }}(24 \mathrm{~V} / 115 \mathrm{~V} / 230 \mathrm{~V})$	W	< 0.5/0.5/1			
Release voltage	\%	10 of U_{s}			
Max. permissible cable length (min. conductor cross-section: $0.75 \mathrm{~mm}^{2}$)					
- AC - DC	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	2000	$\begin{aligned} & 100 \\ & 2000 \end{aligned}$	$\begin{aligned} & 70 \\ & 800 \end{aligned}$	$\begin{aligned} & 40 \\ & 800 \end{aligned}$
Permissible residual current of the electronics (for 0 signal)	mA	1	2	0.3	0.3
$\begin{array}{ll}\text { Operating times at } \boldsymbol{U}_{\mathrm{s}} & \bullet \text { ON-delay } \\ & \bullet \text { OFF-delay }\end{array}$	ms ms	$\begin{aligned} & <6 \\ & <6 \end{aligned}$	$\begin{aligned} & <7 \\ & <7 \end{aligned}$	$\begin{aligned} & <8 \\ & <20 \end{aligned}$	$\begin{aligned} & <8 \\ & <20 \end{aligned}$
Function display		LED yellow			
$\begin{array}{ll}\text { Protection circuit } & \bullet \text { DC } \\ & \bullet \text { AC }\end{array}$		Freewheel diode + Reverse polarity protection Rectifier bridge			

Type		3TX7 01.-1
Load side		
Rated currents ${ }^{1)}$		
- Continuous thermal current $I_{\text {th }}$	A	5
- Rated operational currents I_{e}		
- AC-15 $\begin{array}{ll}\text { At } 24 \mathrm{~V} \\ & \text { At } 110 \mathrm{~V}\end{array}$	A	3 3
At 230 V	A	3
- DC-13 At 24 V At 110 V At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Switching voltage AC/DC	V	$24 . .250$
Min. contact load (reliability 1 ppm$)^{2)}$ - Standard contact - Hard gold-plated contacts		$\begin{aligned} & 17 \mathrm{~V} \mathrm{DC/5} \mathrm{~mA} \\ & 5 \mathrm{~V} \mathrm{DC/1} \mathrm{~mA} \\ & \hline \end{aligned}$
Mechanical endurance	Operating cycles	20×10^{6}
Electrical endurance at I_{e} acc. to AC-15	Operating cycles	100000
Switching frequency	Operating cycles 1/h	5000

Note: If inductive loads are connected in parallel, the endurance ${ }^{1)}$ Capacitive loads can result in micro-weldings on the contacts. of the relay couplers can be increased. \quad 2) $1 \mathrm{ppm}=1$ st fault in one million operating cycles.

3TX7, 3RS18 Coupling Relays 3TX7 Coupling Relays, Narrow Design

Semiconductor couplers

Overview

AC and DC operation

EN 60664-1, EN 60947 and EN 50005; optocouplers: EN 60747-5, IEC 61131-2 (programmable controllers).

In the coupling links in double-decker design, the connections are arranged on two levels; the units are extremely compact. Connection method: screw or spring-type terminals. For test purposes, versions are available with manual 0 automatic switches.
The input and output coupling links differ with regard to the positioning of the terminals and the LEDs. For equipment identification purposes, each coupling link has a blank labeling plate.
In accordance with the technical specifications of electronic systems, the coupling links have a lower power consumption.

Design

Installation instructions

Snap-on mounting is possible on horizontal and vertical standard mounting rails. In the case of vertical standard mounting rails and closely mounted units, the maximum permissible ambient temperature $T_{\mathrm{u}}=40^{\circ} \mathrm{C}$. Any service position is possible.
If the coupling elements are operated continuously 24 hours per day (100% ON period) at the maximum permissible rated control supply voltage and the maximum permissible ambient temperature, it is recommended that no similar equipment or other units that generate heat are placed directly adjoining the coupling elements because this can reduce the endurance of the couplers.
A distance > 10 mm to the right and left of the coupling link reduces the risk of a premature failure under these operating conditions.

Optocouplers switch using semiconductors. These are not subject to wear; welding is not possible.

The 6.2 mm wide optocouplers have an opening in the righthand side of the casing. They can, like relay couplers, be mounted side-by-side without gaps.

Function

Surge suppression

In the case of optocouplers, the contact element is a semiconductor. These are not subject to wear; so welding is not possible.

Note:

With semiconductors, the switching current is not dependent on the inductance of the load, i. e. the switching current for a DC-13 load is the same as that for an inductive DC-12 load. This means that coupling links with a semiconductor output are particularly suitable for inductive loads such as solenoid valves. It is not relevant to specify the number of operating cycles because this does not affect the endurance of the semiconductor provided it is not overheated.

Connecting a cable to the spring-type terminals

3TX7, 3RS18 Coupling Relays 3TX7 Coupling Relays, Narrow Design

Semiconductor couplers

Technical specifications

1) Observe minimum switching voltage for $3 T X 7$ 002-3AB00.

Semiconductor couplers

Type		3TX7 004/3TX7 005
General data		
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)	V	300
Protective separation acc. to EN 60947-1, Appendix N for optocouplers	V	Up to 300
Permissible ambient temperature		
- During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+80 \end{aligned}$
Conductor cross-sections		
For 3TX7 004		\bigcirc Screw terminals
- Solid - Finely stranded without end sleeve - Finely stranded with end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times(0.25 \ldots 4) \\ & 1 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5) \end{aligned}$
- Terminal screws		M3
Permissible opening tool		Screwdriver, $3.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ (8WA2 804)
For 3TX7 005		Spring-type terminals
- Solid or finely stranded - Finely stranded with end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times(0.08 \ldots 2.5) \\ & 1 \times(0.25 \ldots \\ & \ldots \end{aligned}$
Permissible opening tool		Screwdriver, $3.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ (8WA2 803)

Type 3TX7 004-/3TX7 005-		3AB04	3AC. 4	$3 \mathrm{AC03}$	3PB54	4PG24
Control side						
Operating range	V	$11 . .30$ DC				$\begin{aligned} & 110 \\ & \ldots \\ & 230 \\ & \text { AC/DC } \end{aligned}$
$\begin{array}{ll}\text { Power consumption } & \text { - At } 24 \mathrm{~V} \mathrm{DC} \\ & \text { - At } 230 \mathrm{~V} \mathrm{AC}\end{array}$	$\begin{aligned} & W \\ & W \end{aligned}$	≤ 0.5	≤ 0.5	$\begin{aligned} & \leq 0.25 \\ & -- \end{aligned}$	≤ 0.2	≤ 1.5
Release voltage	V	6	5	6	9	20
Permissible residual current of the electronics (for 0 signal)	mA	2.3	2.6	1.5	1.5	0.4
Operating times - ON-delay - OFF-delay	ms ms	$\begin{aligned} & 2.5 \\ & 8 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$
Function display		LED yellow				
Max. permissible cable length (min. conductor cross-section: $0.75 \mathrm{~mm}^{2}$)	m	1700	2000	2000	2000	40
Load side						
Switching voltage	V	10... 48 DC	10... 30 DC	24... 250 AC	$10 \ldots 30$ DC	10... 30 DC
Switching current	A	0.5	5	2	1.5	0.1
Short-time loading capacity	A ms	1.5 20	Short-circuit resistant ${ }^{11}$ --	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	Short-circuit resistant ${ }^{2}$) --	0.2 3
Contacts		1 NO, transistor		1 NO, Triac	1 NO, transistor	
Minimum load current	mA	--	$500^{3)}$	50	--	--
Voltage drop conducting	V	≤ 1	≤ 0.5	≤ 1.6	≤ 0.5	≤ 1.5
Leakage current of the electronics for 0 signal	mA	< 0.1	< 0.1	< 6	< 0.1	< 0.1
Switching frequency for resistive load	Hz	50	50	1	500	25

${ }^{1)}$ In the event of a short-circuit or overload, the semiconductor output switches off. In order to operate the device again, it must be temporarily disconnected from the power supply.
2) In the event of a short-circuit or overload, the current is limited by the semiconductor output
3) If the current falls below the minimum load current, the built-in semiconductor detects an open circuit in the load circuit. The control must be temporarily switched off for resetting.

Semiconductor couplers

Type 3TX7 004-/3TX7 005-		3PB74	3PG74
Control side			
Operating range	V	11... 30 DC	$88 . .253$ AC/DC
Power consumption			
- At 24 V DC	W	0.2	--
- At 110 V DC	W	--	0.2
- At 230 V AC	W	--	≤ 1.5
Release voltage	V	6	25
Permissible residual current of the electronics (for 0 signal)	mA	1.2	1
Operating times			
- ON-delay	ms	0.2	1.5
- OFF-delay	ms	1.0	75
Function display		LED yellow	
Max. permissible cable length (min. conductor cross-section: $0.75 \mathrm{~mm}^{2}$)	m	2000	40
Load side			
Switching voltage max.			
- Min. - Max.	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 11 \mathrm{DC} \\ & 30 \mathrm{DC} \end{aligned}$	
Switching current	A	3	
Short-time loading capacity	A ms	Short-circuit resistant ${ }^{1)}$	
Contacts		1 NO, transistor	
Minimum load current	mA	--	
Voltage drop conducting	V	≤ 0.5	
Leakage current of the electronics for 0 signal	mA	0.1	
Switching frequency for resistive load	1/s	10	

1) In the event of a short-circuit or overload, the current is limited by the semi-
conductor output.

© Siemens AG 2009
 3TX7, 3RS18 Coupling Relays
 3RS18 Coupling Relays with Industrial Housing

Relay couplers

Overview

The new 3RS18 coupling relays are couplers in the well-proven standard 22.5 mm timing relay enclosure. The series comprises relays with 1, 2 and 3 changeover contacts with screw and spring-type connections for combined voltages and wide voltage ranges.

Application

Typical applications are found wherever solid-state compatible contacts are required and equipment with a wide voltage range is implemented.

Technical specifications

[^9]
3TX7, 3RS18 Coupling Relays
 3RS18 Coupling Relays with Industrial Housing

Relay couplers

Type			3RS18 ..-... 0	3RS18 ..-... 1
Load side				
Continuous thermal current $I_{\text {th }}$		A	6	
Rated operational currents I_{e} - AC-15				
- DC-13	- At 24 V - At 110 V - At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$	
Switching current for resistive load - AC-12				
- DC-12				
Switching voltage	- Max. AC - Max. DC	$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & 400 \\ & 250 \end{aligned}$	
Contact material			AgSnO_{2}	AgNi 0.15 hard gold-plated
Min. contact load - Standard contact - Hard gold-plated contacts			17 V DC/5 mA at 1 ppm fault	$5 \mathrm{~V} \mathrm{DC/} / 1 \mathrm{~mA}$ at 1 ppm fault
Endurance - Mechanical - Electrical (at I_{e})		Operating cycles Operating cycles	$\begin{aligned} & 20 \times 10^{6} \\ & 1 \times 10^{6} \end{aligned}$	
Operating times - Max. ON-delay at U_{S} - Max. OFF-delay at U_{S}		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	8 (for 3RS18 00-. .WO. < 30) 30 (for 3RS18 00-. . WO. < 150)	
Switching frequency		Operating cycles 1/h	5000	
Short-circuit protection Weld-free protection with gL/gG op	at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$	A	4	

Overview
The LZX complete units and accessory parts previously available are no longer listed in this catalog. They can still be supplied however in limited quantities. In their place you will now find the new LZS types. LZS complete units are fully compatible with their predecessors, the LZX complete units. The LZX plugin relays have not been changed and are used accordingly in both the LZS and the LZX series.

Due to differences in geometry the LED modules, plug-in bases, retaining brackets and labels can be combined and/or used in only the respective series, LZS or LZX.

List for converting from LZX to LZS plug-in relay couplers:

Complete units	New Order No.
Previous Order No.	LZS:PT3A5L24
LZX:PT3A5L24	LZS:PT3A5R24
LZX:PT3A5R24	LZS:PT3A5S15
LZX:PT3A5S15	LZS:PT3A5T30
LZX:PT3A5T30	LZS:PT5A5L24
LZX:PT5A5L24	LZS:PT5A5R24
LZX:PT5A5R24	LZS:PT5A5S15
LZX:PT5A5S15	LZS:PT5A5T30
LZX:PT5A5T30	LZS:PT5B5R24
LZX:PT5B5L24	LZS:PT5B5S15
LZX:PT5B5R24	LZS:PT5B5T30
LZX:PT5B5S15	LZS:RT3A4L24
LZX:PT5B5T30	LZS:RT3A4R24
LZX:RT3A4L24	LZS:RT3A4S15
LZX:RT3A4R24	LZS:RT3A4T30
LZX:RT3A4S15	LZS:RT3B4L24
LZX:RT3A4T30	LZS:RT3B4R24
LZX:RT3B4L24	LZS:RT3B4S15
LZX:RT3B4R24	LZS:RT3B4T30
LZX:RT3B4S15	LZS:RT4A4L24
LZX:RT3B4T30	LZS:RT4A4R24
LZX:RT4A4L24	LZS:RT4A4S15
LZX:RT4A4R24	LZS:RT4A4T30
LZX:RT4A4S15	LZS:RT4B4L24
LZX:RT4A4T30	LZS:RT4B4R24
LZX:RT4B4L24	
LZX:RT4B4R24	LZX:RT4B4S15
LZX:RT4B4T30	

Prices for the new LZS series are lower than for the previous LZX series.
Note:
In addition the LZS series offers not only service-proven screw connections but also versions with plug-in terminals.
The following conversion list will help you to change over from the LZX types previously sold to the new LZS types. Please contact your regional adviser if you have any questions.

List for converting from LZX to LZS accessories for individual modules:

Accessories for individual modules Previous Order No.	New Order No.
LZX:MT28800	LZS:MT28800
LZX:MT78750	LZS:MT78750
LZX:PT16016	LZS:PT17024 ${ }^{1)}$
LZX:PT16040	LZS:PT17021

1) LZS:PT17024 for PT standard base: Without logical isolation, screw terminals.
2) LZS:PT1721 for PT base with logical isolation, screw terminals and plug-in terminals.

Plug-in relay couplers

Design

Plug-in relay coupling links can be ordered complete or as single modules.

Mounting

The relays are plugged into the base and this is snapped onto a TH 35 standard mounting rail according to EN 60715.
A retaining bracket can be ordered for the MT series that additionally fixes the relay into a plug-in base (under conditions of increased mechanical stress). For the RT and PT series, a combined fixing and ejection bracket is available which can be used to remove the relay where access is difficult, for example, when relays are mounted side-by-side.
They can be mounted as required.

Function

In accordance with the technical specifications of electronic systems, the coupling links have a lower power consumption. In the versions equipped with LEDs, these indicate the switching state. The LZS:PT/MT plug-in relay couplers have a test button. This can be used to force the plug-in relay coupler into the tripped state and to lock it. This is indicated by a raised petrol-colored lever.

Surge suppression

The 24 V DC relays LZX:RT and LZX: PT with LEDs can be supplied with, all others without integral surge suppression (freewheel diode connected in parallel with A1/A2). The positive supply voltage must be connected to coil terminal A1.

Logical disconnection

The terminals for the contacts and the terminals for the coil are arranged on separate levels, e. g. above for contacts and below for coil. Logical isolation is not necessarily protective separation.

Protective separation

For protective separation, transfer of the voltage of one circuit to another circuit is prevented to a suitable degree of safety (requirements and tests are described in EN 60947-1 in Appendix N).

Control with solid-state output

In the case of solid-state outputs (e. g. BERO) with overload and short-circuit protection, you must make allowance during configuration for the temporarily flowing capacitor charging currents!
This is possible, for example, by using a suitable LZS plug-in relay coupler.

Technical specifications

Plug-in relay couplers

Relay type		MT industrial relay, 11-pole (35.5 mm) 3 CO			
AC and DC operation					
Rated control supply voltage Us ${ }^{1)}$	V	24 DC	24 AC	115 AC	230 AC
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ Degree of pollution	V	$\begin{aligned} & 250 \\ & 3 \end{aligned}$			
Overvoltage category Acc. to EN 60664-1		III			
Protective separation Between the coil and the contacts Acc. to EN 60947-1, Appendix N		No			
Degree of protection of relay/base		IP50/IP20			
Permissible ambient temperature - During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40 \ldots+60 \\ & -45 \ldots+80 \end{aligned}$	$\begin{aligned} & -45 \ldots+50 \\ & -45 \ldots+80 \end{aligned}$	$\begin{aligned} & -45 \ldots+50 \\ & -45 \ldots+80 \end{aligned}$	$\begin{aligned} & -45 \ldots+50 \\ & -45 \ldots+80 \end{aligned}$
Conductor cross-sections					
- Screw terminals - Solid - Finely stranded with or without end sleeve - Permissible opening tool	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 2.5 \\ & 2 \times 1.5 \\ & \text { Screwdriver size } 1 \text { or } \end{aligned}$	zidriv 1		
Control side					
Operating range - At $20^{\circ} \mathrm{C}$	V	$18 . .38$	19.2 ... 38	$92 . .137$	$184 . .264$
Power consumption at U_{s}		1.2 W	2.3 VA	2.3 VA	2.3 VA
Release voltage	V	2.4	9.6	46	92
Permissible residual current	mA	4.5	29.2	6.2	3.0
Protection circuit		No			
Max. permissible cable length at $\boldsymbol{U}_{\mathbf{s}}{ }^{2)}$ (min. cross-section: $0.75 \mathrm{~mm}^{2}$)	m	> 2000	On request	On request	80
Load side					
Switching voltage - AC/DC	V	$24 . .250$			
Rated currents ${ }^{3)}$ - Continuous thermal current $I_{\text {th }}$ - Rated operational current $I_{\mathrm{e}} / \mathrm{DC}$-13 acc. to utilization categories (EN 60947) - Rated operational current $I_{\mathrm{e}} / \mathrm{AC}$-15 acc. to utilization categories (EN 60947)	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	```10 2 at 24 V 0 . 2 7 ~ a t ~ 2 3 0 ~ V ~ 5 at 24 V and 230 V```			
Short-circuit protection $I_{\mathrm{k}} \geq 1 \mathrm{kA}$ acc. to IEC 60947-5-1 Fuse links gL/gG operational class DIAZED	A	10			
Shock resistance Half-sine acc. to IEC 60028-2-27	g/ms	13/11			
Vibration resistance Floating sine acc. to IEC 60068-2-6 30 ... 150 Hz - Opening the normally-closed contacts along $g 2$ the critical axis - Closing the normally-open contacts $g>20$					
Min. contact load (reliability: 1 ppm)		12 V DC/10 mA			
Mechanical endurance	Operating cycles	20×10^{6}			
Electrical endurance (resistive load at 250 V AC)	Operating cycles	4×10^{5}			
Switching frequency (operating cycles) - Without load					
- With load	$\begin{aligned} & 1 / \mathrm{min} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 20 \\ & 1200 \end{aligned}$			
Make-time	typ./ms	12			
Break-time	typ./ms	5			
Bounce time	typ./ms	4			
Contact material		AgNi 90/10			

${ }^{1)} \mathrm{AC}$ voltages, 50 Hz ; for 60 Hz operation, the lower response value must be increased by 10%; the power loss will reduce slightly.
2) The max. cable length depends on the conductor capacity and the cable installation. It can be increased by means of parallel load on A1/A2.
${ }^{3)}$ Capacitive loads can result in micro-weldings on the contacts.

Coupling Relays with LZS, LZX Plug-in Relays

Plug-in relay couplers

More information

Notes on configuration
PT series
Mounting the LZS:PT17024 fixing/ejection bracket on the LZS:PT787.0 standard plug-in base with screw terminals

Legend:

(1) Locking position
(2) Mounting direction

Mounting the coupling relays with plug-in relay

Important:
The LZS:PT17021 and LZS:PT17024 ejection brackets of the coupling relays with plug-in relay are not status displays!

$\underline{\text { RT series }}$

Mounting the LZS:RT17016 fixing/ejection bracket on the LZS:RT7872. plug-in base

Legend:

(1) Locking position
(2) Mounting direction
(3) Demounting direction

Mounting the coupling relays with plug-in relay

Important
The LZS:RT17016 ejection brackets of the coupling relays with plug-in relay are not status displays!

4-pole, 4 kW

Overview

Version
The 3TG10 power relays/miniature contactors with 4 main contacts are available with $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ screw terminals or flat connectors. The versions with screw terminals are climate-proof and finger-safe according to EN 61140.

The 3TG10 power relays/miniature contactors are small. The overall width is 36 mm .

Technical specifications

1) If the three main current paths carry a load of 20 A , the following applies if
$I>10 \mathrm{~A}$ for the fourth conducting path: permissible ambient temperature $40^{\circ} \mathrm{C}$.

3TG10 Power Relays/Miniature Contactors

4-pole, 4 kW

For short-circuit protection for overload see "Protection Equipment --> Overload Relays".

Overview

Snap-on auxiliary switch blocks

The auxiliary switch blocks and the maximum number of blocks that can be mounted are described in the sections "Motor Contactors" and "Contactor Relays".

Solid-state time-delay auxiliary switch block

The timer module, which is available in the "ON-DELAY" and "OFF-DELAY" versions, allows time-delayed functions up to 100 s (3 distinct delay ranges).
It contains a relay with one NO contact and one NC contact; depending on the version, the relay is switched either after an ONdelay or after an OFF-delay.
The timer module with "WYE-DELTA FUNCTION" is equipped with one delayed and one instantaneous NO contact, with a dead time of 50 ms between the two. The delay time of the NO contact can be adjusted between 1.5 s and 30 s .
Wye-delta function:

The contactor on which the solid-state, time-delay auxiliary switch block is mounted operates without a delay.

Size SOO

The solid-state, time-delay auxiliary switch block is fitted onto the front side of the contactor. The timer module is supplied with power directly by plug-in contacts through the coil terminals of the contactor, in parallel with A1/A2. The timing function is activated by closing the contactor on which the auxiliary switch block is mounted. The OFF-delay version operates without an auxiliary voltage; minimum ON period: 200 ms .
A varistor is integrated in the timer module in order to damp opening surges in the contactor coil.
The solid-state, time-delay auxiliary switch block cannot be mounted on size SOO coupling relays.

Sizes S0 to S12

The solid-state, time-delay auxiliary switch block is fitted onto the front side of the contactor.
The timer module is supplied with power through two terminals (A1/A2); the time delay of the auxiliary switch block can be activated either by a parallel link to any contactor coil or by any power source.
The OFF-delay version operates without an auxiliary voltage; minimum ON period: 200 ms .
A single-pole auxiliary switch block can be snapped onto the front of the contactor in addition to the timer module.
The timer module has no integrated components for overvoltage damping.

Solid-state timing relay block with semiconductor output

The timer module in the "ON-DELAY" and "OFF-DELAY with auxiliary voltage" versions allows time-delayed functions up to 100 s (3 distinct delay ranges). Contactors fitted with a timing relay block close or open after a delay according to the set time.
The ON-delay variant of the timing relay is connected in series with the contactor coil; terminal A1 of this coil must not be connected.
With the OFF-delay variant of the timing relay, the contactor coil is contacted directly through the relay; terminals A1 and A2 of the contactor coil must not be connected.

The timing relays are suitable for both AC and DC operation.

Size SOO

The version for size S00 contactors is fitted onto the front of the contactor (with the supply voltage switched off) and then slid into its latched position; at the same time, the timing relay is connected by means of plug-in contacts to coil terminals A1 and A2 of the contactor. Any contactor coil terminals which are not required are sealed off by means of covers on the enclosure of the timing relay block, to prevent them from being connected inadvertently.
A varistor is integrated in the timer module in order to damp opening surges in the contactor coil.
The solid-state, timing relay block cannot be mounted on size SOO coupling relays.

Sizes S0 to S3

The timing relay block for size SO to S3 contactors is plugged into coil terminals A1 and A2 on top of each contactor; the timing relay is connected both electrically and mechanically by means of pins.
A varistor is integrated in the timer module in order to damp opening surges in the contactor coil.
Configuring note:

The activation of loads parallel to the start input is not permissible when using AC control voltage (see (a) in the circuit diagram).
The 3RT19 16-2D . . /3RT19 26-2D ... OFF-delay time relay blocks have a zero potential start input B1. This means that if there is a parallel load on terminal B1, activation can be simulated with AC voltage. In this case, the additional load (e. g. contactor K3) must be wired according to (b).

OFF-delay device for size S00 to S3 contactors

AC and DC operation
IEC 60947, EN 60947.
For screw and snap-on mounting onto 35 mm standard mounting rail. The OFF-delay devices have screw terminals.
The OFF-delay device prevents a contactor from dropping out unintentionally when there is a short-time voltage dip or voltage failure. It supplies a downstream, DC-operated contactor with the necessary energy during a voltage dip, ensuring that the contactor does not trip. The 3RT19 16 OFF-delay devices are specifically designed for operation with the 3RT contactors and 3RH contactor relays of the SIRIUS series.

The OFF-delay device operates without external voltage on a capacitive basis, and can be energized with either AC or DC (24 V version only for DC operation). Voltage matching, which is only necessary with AC operation, is performed using a rectifier bridge.
A contactor opens after a delay when the capacitors of the magnetic coil, built into the OFF-delay device, are switched in parallel. In the event of voltage failures, the capacitors are discharged via the magnetic coil and thereby delay the opening of the contactor.

Accessories and Spare Parts For 3RT, 3RH Contactors and Contactor Relays

Accessories for 3RT, 3RH contactors

and contactor relays
If the command devices are upstream of the OFF-delay device in the circuit, the OFF-delay takes effect with every opening operation. If the opening operation is downstream of the OFF-delay device, an OFF-delay only applies in the event of failure of the mains voltage.

Operation

In the case of the versions for rated control supply voltages of 110 V and 230 V , either AC voltage or DC voltage can be applied on the line side, whereas the variant for 24 V is designed for DC operation only.
A DC-operated contactor is connected to the output in accordance with the input voltage that is applied.
The mean value of the OFF-delay is approximately 1.5 times the specified minimum time.

Surge suppressors

- Without LED (also for Cage Clamp terminals) size S00, S0, S2, S3, S6 to S12
- With LED (also for Cage Clamp terminals) size S00

All 3RT1 contactors and 3RH1 contactor relays can be retrofitted with RC elements or varistors for damping opening surges in the coil. Diodes or diode assemblies (comprising noise suppression diodes and Zener diodes for rapid switch-off) can be used.
The surge suppressors are plugged onto the front of size S00 contactors. Space is provided for them next to a snap-on auxiliary switch block.
With all size S0 to S3 contactors, varistors, RC elements and diode assemblies can be plugged on directly at the coil terminals, either on the top or underneath.
The plug-in direction of the diodes and diode assemblies is determined by a coding device.
Coupling relays are supplied either without overvoltage damping or with a varistor or diode connected as standard, according to the version.
Note:
The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are damped against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).
Electromagnetic interference suppression module, 3-phase for size SOO contactors

A so-called counter-e.m.f. (electromotive force) is produced when motors or various inductive loads are turned off. Voltage peaks of up to 4000 V may occur as a result, with a frequency spectrum from 1 kHz to 10 MHz and a rate of voltage variation from 0.1 to $20 \mathrm{~V} / \mathrm{ns}$.
Capacitive input to various analog and digital signals makes it necessary to suppress interference in the load circuit.

Reducing contact arcing

The connection between the main current path and the EMC interference suppression module enables contact arcing, which is responsible for contact erosion and the majority of clicking noises, to be reduced; this in turn is conducive to an electromagnetically compatible design.

Higher operational reliability

Since the EMC interference suppression module achieves a significant reduction in radio-frequency components and the voltage level in three phases, the contact endurance is also improved considerably. This makes an important contribution towards enhancing the reliability and availability of the system as a whole.

Dispensing with fine graduations

There is no need for fine graduations within each performance class, as smaller motors inherently have a higher inductance, so that one solution for all fixed-speed operating mechanisms up to 5.5 kW is adequate.

Two electrical versions are available:

- The advantages of the RC circuit lie mainly in the reduction in the rate of rise and in its RF damping ability. The selected values ensure effective interference suppression over a wide range.

- The varistor circuit can absorb a high energy level and can also be used for frequencies ranging from 10 to 400 Hz (closed-loop controlled operating mechanisms). There is no limiting below the knee-point voltage, however.

Accessories and Spare Parts For 3RT, 3RH Contactors and Contactor Relays

Accessories for 3RT, 3RH contactors
 and contactor relays

Additional load module

Size SOO for plugging onto the front of the contactors with and without auxiliary switch block
Coupling links for mounting on contactors of sizes S0 to S3
DC operation
IEC 60947 and EN 60947.
The coupling link is suitable for use in any climate. It is fingersafe according to EN 50274. The terminal designations comply with EN 50005 .
System-compatible operation with 24 DC V, operating range 17 to 30 V .
Low power consumption in conformity with the technical specifications of the solid-state systems. An LED indicates the switching state.
Surge suppression
The 3RH19 24-1GP11 coupling link has an integrated surge suppressor (varistor) for the contactor coil being switched.

Mounting

The 3RH19 24-1GP11 coupling link is mounted directly on the contactor coil.

Solder pin adapters

The solder pin adapters for the size SOO contactors are available in two versions:

- Solder pin adapter for contactors with one integrated auxiliary contact
- Solder pin adapter for contactors with mounted 4-pole auxiliary switch block

Screw adapters

Plug-on adapters improve the accessibility of the screw fixing for size SO contactors. As a result it is possible to position the screwdriver vertically even when using insulated screwdrivers or power screwdrivers.
Optionally the adapters can be rotated through 90° before mounting.

Sealable covers for sizes S00 to S12

When contactors and contactor relays are used in safety-oriented applications, it must be ensured that it is impossible to operate the contactors manually.
For SIRIUS contactors there are sealable covers available for this purpose as accessories; these prevent accidental manual operation. These are transparent molded-plastic caps with a bracket that enables the contactor to be sealed.

Technical specifications

Technical specifications according to EN 61812-1 (VDE 0435 Part 2021)

Contactors Type		3RT19 26-3A Mechanical latching block for the 3RT1. 2. and 3RT1. 3. contactors
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)	V	690
Mechanical endurance \bullet With 3RT1. 2 (operating cycles) • With 3RT1. 3		$\begin{aligned} & 3 \text { million } \\ & 50000 \end{aligned}$
Permissible ambient temperature		
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$
- During storage	${ }^{\circ} \mathrm{C}$	$-50 \ldots+80$
Degree of protection acc. to EN 60947-1, Appendix C		IP20
Operating range of the magnetic coil At AC $50 / 60 \mathrm{~Hz}$ and DC		$0.85 \ldots 1.1 \times U_{\text {S }}$
Power consumption of the magnetic coils of the unlocking magnet (for cold coil and $1.0 \times U_{s}$) AC and DC operation	W	Approx. 4
Command duration for de-energizing		
- AC operation	ms	$18 . .31$
- DC operation	ms	$18 . . .26$
Conductor cross-sections		
- Solid	$\begin{aligned} & \mathrm{mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 2.5) ; 1 \times 4 \\ & 2 \times 14 ; 1 \times 12 \end{aligned}$
- Finely stranded with end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 2.5) ; 1 \times 2.5 \\ & 2 \times 14 ; 1 \times 12 \end{aligned}$
Tightening torque of the terminal screws	Nm lb.in	$\begin{aligned} & 0.8 \ldots 1.1 \\ & 7 \ldots .9 .5 \end{aligned}$

Accessories for 3RT, 3RH contactors

and contactor relays

Accessories for 3RT, 3RH contactors and contactor relays

Function table 3RT19 16, 3RT19 26
Function

\checkmark Function is possible.

Accessories for 3RT, 3RH contactors

and contactor relays

$T_{\mathrm{sp}}=$ Coil temperature

1) Doubling the delay time can be achieved by doubling the capacitance. Commercially available capacitors can be used, which can be connected to terminals C+ and Z-

[^10]

Accessories for 3RT, 3RH contactors

and contactor relays

Versions Connection modules for contactors with screw terminals		3RT1900-4RE01 plugs $\mathbf{S 0 0}$, $\mathbf{S 0}$	3RT1916-4RD01 adapters S00	3RT1926-4RD01 adapters SO
(1+ and (11) rated data				
- Rated operational voltage U_{e}	V	480		
- Rated insulation voltage U_{i}	V	600		
- Uninterrupted current, at $40^{\circ} \mathrm{C}$	A	16/25	16	25
- At 600 V	kA	5		
- CLASS RK5 fuse	A	100	60	100
- Circuit breakers with overload protection acc. to UL 489	A	100	60	100
Combination motor controllers type E				
Acc. to UL 508 - At 480 V	Type	3RV102		
	A	22	--	22
	kA	65	--	65
- At 600 V	Type	3RV102		
	A	22	--	22
	kA	10	--	10

1) For more information about short-circuit values, e. g. for protection against short-circuit currents, see the UL guide (Order No.: A5E02118883) or UL reports (http://www.siemens.com/lowvoltage/support) for the individual devices.

Contactors Type		3RH19 24, 3TX7 090 Coupling links for mounting on contactors acc. to IEC 60947/EN 60947
General data		
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)	V	300
Protective separation between the coil and the contacts acc. to EN 60947-1, Appendix N	V AC	Up to 300
Degree of protection acc. to EN 60947-1, Appendix C - Terminals - Enclosure		$\begin{aligned} & \text { IP20 } \\ & \text { IP40 } \end{aligned}$
Permissible ambient temperature - During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+80 \end{aligned}$
Conductor cross-section - Solid - Finely stranded with end sleeve Terminal screws	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(0.5 \ldots 1.5) \\ & \text { M3 } \\ & \hline \end{aligned}$
Short-circuit protection (weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) Fuse links, $g \mathrm{~L} / \mathrm{gG}$ operational class LV HRC 3NA, DIAZED 5SB, NEOZED 5SE	A	6
Control side		
Rated control supply voltage $\boldsymbol{U}_{\text {S }}$	V DC	24
Operating range	V DC	$17 . . .30$
Power consumption at $\boldsymbol{U}_{\text {S }}$	W	0.5
Nominal current input	mA	20
Release voltage	V	≥ 4
Function display		LED yellow
Protection circuit		Varistor

Accessories for 3RT, 3RH contactors and contactor relays

Contactors Type		3RH19 24, 3TX7 090 Coupling links for mounting on contactors acc. to IEC 60947/EN 60947
Load side		
Mechanical endurance In million operating cycles		20
Electrical endurance at $I_{\mathrm{e}} \quad$ In million operating cycles		0.1
Switching frequency Operating cycles	h^{-1}	5000
Make-time	ms	Approx. 7
Break-time	ms	Approx. 4
Bounce time	ms	Approx. 2
Contact material		AgSnO
Switching voltage	$V \mathrm{AC}$	$24 . .250$
Permissible residual current of the electronics (for 0 signal)	mA	2.5
Rated operational currents ${ }^{1)}$ Continuous thermal current $I_{\text {th }}$	A	6
Rated operational currents $I_{\text {e }}$ Acc. to utilization categories EN 60947		
- AC-15$-A t ~$ - At 110 V - At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$
- DC-13$-A t 24 ~ V$ - At 110 V - At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Switching current with resistive load to EN 60255 (relay standard) and EN 60947		
$\text { - AC-12 } \begin{array}{ll} & - \text { At } 24 \mathrm{~V} \\ & - \text { At } 110 \mathrm{~V} \\ & - \text { At } 230 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$
$\text { -DC-12 } \begin{aligned} & - \text { At } 24 \mathrm{~V} \\ & - \text { At } 110 \mathrm{~V} \\ & - \text { At } 230 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 6 \\ & 0.3 \\ & 0.2^{1)} \end{aligned}$

${ }^{1)}$ Capacitive loads can result in micro-weldings on the contacts.

Accessories and Spare Parts
For 3T Contactors and Contactor Relays

Accessories for

3TB, 3TC, 3TF, 3TG, 3TK contactors

Technical specifications

For 3TF2 contactors Type		Auxiliary switch block
		3TX4 4..-..
General data		
Permissible mounting position AC and DC operation		Any
Mechanical endurance		10 million
- AC operation	Operating cycles	10 million
- DC operation	Operating cycles	30 million
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)		$丹$ For screw terminals
	V	500
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$ (degree of pollution 3)		(H) For screw terminals
	kV	6
Protective separation between the coil and the contacts acc. to EN 60947-1, Appendix N	V	Up to 300
Positively-driven operation		
- 3TF2 basic unit or complete unit		ZH1/457, SUVA
- 3TF20 basic unit with 3TX4 4 auxiliary switch block - Upper level - Lower level - Different levels		ZH1/457, SUVA ZH1/457, SUVA SUVA
Permissible ambient temperature ${ }^{1)}$		
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+55$
- During storage	${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$
Degree of protection acc. to EN 60947-1 Appendix C		IP20 for screw terminals
Touch protection acc. to EN 50274		Finger-safe for screw terminals
Shock resistance		
- Rectangular pulse $\begin{array}{ll}\text { - AC operation } \\ & \text { - DC operation }\end{array}$	g / ms g / ms	7/5 and 4/10 10/5 and 6/10
- Sine pulse - AC operation - DC operation	g / ms g / ms	9/5 and 6/10 $13 / 5$ and $8 / 10$
Short-circuit protection		
Short-circuit protection		
Fuse links gL/gG LV HRC 3NA, DIAZED 5SB, NEOZED 5SE	A	6
Weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$		

1) Applies to $50 / 60 \mathrm{~Hz}$ coil:

Operating range at $60 \mathrm{~Hz}: 0.85 \ldots 1.1 \times U_{\mathrm{s}}$;
at $50 \mathrm{~Hz}, 1.1 \times \mathrm{U}_{\mathrm{s}}$, side-by-side mounting and 100% ON period the max. ambient temperature is $+40^{\circ} \mathrm{C}$.

Technical specifications

For 3TH2 contactor relays Type		Auxiliary switch block
		3TX4 4..-..
General data		
Permissible mounting position AC and DC operation		Any
Mechanical endurance		
- AC operation	Operating cycles	10 million
- DC operation	Operating cycles	30 million
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (degree of pollution 3)		(9) For screw terminals
	V	500
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$ (degree of pollution 3)		(H) For screw terminals
	kV	6
Protective separation between the coil and the contacts acc. to EN 60947-1, Appendix N	V	Up to 300
Positively-driven operation		
- 3TH2 basic unit or complete unit		ZH1/457, SUVA
- 3TH20 basic unit with 3TX4 4 auxiliary switch block - Upper level - Lower level - Different levels		ZH1/457, SUVA ZH1/457, SUVA SUVA
Permissible ambient temperature ${ }^{1 /}$		
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+55$
- During storage	${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$
Degree of protection acc. to EN 60947-1 Appendix C		IP20 for screw terminals
Touch protection acc. to EN 50274		Finger-safe for screw terminals
Shock resistance		
- Rectangular pulse $\begin{array}{ll}\text { - AC operation } \\ & \text { - DC operation }\end{array}$	g/ms g / ms	7/5 and 4/10 $10 / 5$ and $6 / 10$
- Sine pulse \quad - AC operation	g / ms g / ms	9/5 and 6/10 $13 / 5$ and $8 / 10$
Short-circuit protection		
Short-circuit protection		
Fuse links gL/gG LV HRC 3NA, DIAZED 5SB, NEOZED 5SE Weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$	A	6

[^11]ambient temperature is $+40^{\circ} \mathrm{C}$.

Overview

Dimensional drawings	Schematics
3RA13 .. 3/200 ... 3/202	3RA13 .. 3/237
3RA14 ... 3/203, 3/204	3RA14 ..3/238
3RA19 ... 3/199, 3/200	3RH11 3/226, 3/231, 3/232, 3/235, 3/236
3RH11 ... 3/188, 3/191	3RH14 ...3/232, 3/235
3RH14 ...3/191	3RH19 3/222 ... 3/224, 3/227 ... 3/230
3RH19 ... 3/196, 3/197	3RS18 ..3/249
3RS18 .. 3/216	3RT103/221, 3/226 ... 3/228, 3/231
3RT10 3/179 ... 3/184, 3/188 ... 3/190	3RT12 ...3/221
3RT12 ...3/185	3RT13 .. 3/221, 3/228
3RT13 ..3/185	3RT14 ...3/221, 3/227
3RT14 ... 3/181, 3/183, 3/184	3RT15 ...3/221, 3/228
3RT15 .. 3/186	3RT16 ..3/225, 3/230
3RT16 ..3/187	3RT19 3/222 ... 3/225, 3/229, 3/230
3RT19 .. 3/193 ... 3/196, 3/198, 3/204	
	3TB5 ... 3/240, 3/243
3TB5 ... 3/207, 3/212	3TC4 ..3/242, 3/244
3TC4 .. 3/210, 3/212	3TC5 ..3/242, 3/244
3TC5 ... 3/210	3TC7 ..3/242, 3/244
3TC7 ..3/211	3TD68 ..3/240
3TD68 ..3/207	3TE68 ..3/241
3TE68 ...3/207	3TF2 ..3/245
3TF2 .. 3/213	3TF6 ...3/239, 3/243
3TF6 ...3/205	3TG10 ..3/239, 3/243
3TG10 ..3/204	3TH2 .. 3/246
3TH2 ... 3/215, 3/216	3TH4 ...3/233, 3/234
3TH4 ...3/192	3TK1 .. 3/241, 3/244
3TK1 .. 3/208, 3/209	3TK2 ..3/245
3TK2 ..3/214	3TX4 ..3/245, 3/246
3TX2 ..3/211	3TX7 ..3/239, 3/247 ... 3/249
3TX4 ...3/192, 3/213 ... 3/215	3TY6 ..3/240
3TX7 .. 3/192, 3/206, 3/217	3TY7 ...3/239
LZS/LZX .. 3/218 ... 3/220	LZS/LZX .. 3/250, 3/251

Dimensional drawings

3RT10 contactors, 3-pole
3RT10 1 contactors, size S00
Screw terminals
with surge suppressor, auxiliary switch block and mounted overload relay

Lateral distance to
2) Auxiliary switch block (also solid-state compatible version 3RH19 11- . NF . .)
3) Surge suppressor (also 3RT19 16-1GA00 additional load module)
4) Drilling pattern
5) Auxiliary switch block 1-pole

3RT10 1 contactors, size S00
Cage Clamp terminals with auxiliary switch block

3RT10 2 contactors, 3RT10 2 coupling relays, size S0

Screw terminals
with surge suppressor, auxiliary switch blocks and mounted overload relay

For size SO:
$a=3 \mathrm{~mm}$ at $<240 \mathrm{~V}$
$\mathrm{a}=7 \mathrm{~mm}$ at $>240 \mathrm{~V}$
b = DC 10 mm deeper than $A C$

1) Auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front, 1-, 2- and 4-pole (also solid-state compatible version 3RH19 21-. FE22)
3) Surge suppressor
4) Drilling pattern

Project planning aids

3RT10 contactors, 3-pole

3RT10 2 contactors, 3RT10 2 coupling relays, size S0

Cage Clamp terminals
with surge suppressor, auxiliary switch blocks and mounted overload relay

3RT10 3 contactors, size S2

Screw terminals
with surge suppressor, auxiliary switch blocks and mounted overload relay

$\mathrm{a}=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$, diode assembly
$\mathrm{a}=3.5 \mathrm{~mm}$ with varistor $>240 \mathrm{~V}$
$a=17 \mathrm{~mm}$ with RC element
b = DC 15 mm deeper than AC

1) Auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front,
(1-, 2- and 4-pole)
3) Surge suppressor
${ }^{4)}$ Drilling pattern

3RT10 and 3RT14 contactors, 3-pole
3RT10 3 contactors, size S2
Cage Clamp terminals
with surge suppressor, auxiliary switch blocks and mounted overload relay

3RT10 4, 3RT14 46 contactors, size S3
Screw terminals
with surge suppressor, auxiliary switch blocks and mounted overload relay

Project planning aids

3RT10 contactors, 3-pole

3RT10 4 contactors, size S3

Cage Clamp terminals
with surge suppressor, auxiliary switch blocks and mounted overload relay

For size S3:
$\mathrm{a}=0 \mathrm{~mm}$ with varistor, diode assembly and $<240 \mathrm{~V}$
$\mathrm{a}=3.5 \mathrm{~mm}$ with varistor and $>240 \mathrm{~V}$
$\mathrm{a}=17 \mathrm{~mm}$ with RC element
b $=$ DC 13 mm deeper than $A C$

1) Auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front (1-, 2- and 4-pole), same dimensions for versions with screw or Cage Clamp terminals
3) Surge suppressor
4) Drilling pattern
5) For mounting onto TH 35 standard mounting rail according to EN 60715 (15 mm deep) or TH 75 standard mounting rail according to EN 60715
6) Allen screw 4 mm

3RT10 coupling relays, size S00

with surge suppressor

Deviating dimensions for coupling relays with Cage Clamp terminals:
Height: 60 mm
3) Surge suppressor
4) Drilling pattern

3RT10 and 3RT14 contactors, 3-pole
3RT10 5, 3RT14 5 contactors, size S6
with lateral and front mounted auxiliary switch block mounted overload relay and box terminals,
lateral solid-state module with remaining lifetime indicator

Distance from grounded parts
Lateral: 10 mm
Front: 20 mm

For size S6:
$k=120 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) 2nd auxiliary switch block, lateral
2) Auxiliary switch block, mountable on the front
3) RC element
4) 3RB20 overload relay, mounted
5) 3RT19 55-4G box terminal block (Allen screw 4 mm)
6) 3RT19 56-4G box terminal block (Allen screw 4 mm)
7) PLC connection 24 V DC and changeover switch (for 3RT1...-.N)
8) Solid-state module with remaining lifetime indicator (auxiliary switch block not mountable on right-hand side)

Project planning aids

3RT10 and 3RT14 contactors, 3-pole

3RT10 6, 3RT14 6 contactors, size S10

with lateral and front mounted auxiliary switch block
mounted overload relay and box terminals,
lateral solid-state module with remaining lifetime indicator

3RT10 7, 3RT14 7 contactors, size S12
with lateral and front mounted auxiliary switch block mounted overload relay and box terminals,
lateral solid-state module with remaining lifetime indicator

For sizes S10 and S12:
Distance from grounded parts
Lateral: 10 mm
Front: 20 mm

For sizes S10 and S12:
$k=150 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) 2nd auxiliary switch block, lateral
2) Auxiliary switch block, mountable on the front
3) RC element
4) 3RB20 overload relay, mounted
${ }^{5)}$ Box terminal block (Allen screw 6 mm)
5) PLC connection 24 V DC and changeover switch (for 3RT1...-.N)
6) Solid-state module with remaining lifetime indicator (auxiliary switch block not mountable on right-hand side)

3RT12 vacuum contactors, 3-pole

3RT12 6 vacuum contactors, size S10

with lateral auxiliary switch block,
mounted overload relay and box terminals

Detail for 2)
Contact erosion indication for vacuum tubes

3RT12 7 vacuum contactors, size S12
with lateral auxiliary switch block,
mounted overload relay and box terminals

For sizes S10 and S12:
$k=150 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) 2nd auxiliary switch block, lateral
2) Switch position and contact erosion indication
3) RC element
4) 3RB20 overload relay, mounted
5) Box terminal block (Allen screw 6 mm)
6) PLC connection 24 VDC and changeover switch (for 3RT1...-.N)

Project planning aids

3RT13 and 3RT15 contactors, 4-pole

3RT13 1 and 3RT15 1 contactors, size S00,

Screw terminals
with surge suppressor and auxiliary switch block

3RT13 2 and 3RT15 2 contactors, size S0
with surge suppressor and auxiliary switch block

Lateral distance to
grounded components $=6 \mathrm{~mm}$

For size SOO:
Deviating dimensions for contactors
with Cage Clamp terminals:
Height: 60 mm
Mounting depth with auxiliary switch block: 110 mm
2) Auxiliary switch block
(also solid-state compatible version
3RH19 11-.N...)
3) Surge suppressor
(also 3RT19 16-1GA00
additional load module)
4) Drilling pattern
5) Auxiliary switch block 1-pole

For size S0:
a $=3 \mathrm{~mm}$ at $<250 \mathrm{~V}$ and mounting of surge suppressor
$\mathrm{a}=7 \mathrm{~mm}$ at $>250 \mathrm{~V}$ and mounting of surge suppressor
b = DC 10 mm deeper than AC

1) Auxiliary switch block, laterally mountable (left)
2) Auxiliary switch block, mountable on the front
3) Surge suppressor
${ }^{4)}$ Drilling pattern

3RT13 3 and 3RT15 3 contactors, size S2
with surge suppressor and auxiliary switch block

For sizes S2 and S3:
a $=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$
$\mathrm{a}=3.5 \mathrm{~mm}$ with varistor $>240 \mathrm{~V}$
$\mathrm{a}=17 \mathrm{~mm}$ with RC element and diode assembly
b = S2: DC 15 mm deeper than AC
S3: DC 13 mm deeper than AC

1) Auxiliary switch block, laterally mountable (right or left)
2) Auxiliary switch block, mountable on the front, (1-, 2- and 4-pole, also 3RH19 211FE22 solid-state compatible version)
3) Surge suppressor
4) Drilling pattern
5) For mounting onto TH 35 standard mounting rail according to EN 60715 (15 mm deep) or for size S3 also to TH 75 standard mounting rail according to EN 60715
6) Allen screw 4 mm

3RT13 4 contactors, size S3
with surge suppressor and auxiliary switch block

3RT16 capacitor contactors

3RT16 17 capacitor contactors, size S00

3RT16 27 capacitor contactors, size S0

3RT16 47 capacitor contactors, size S3

Project planning aids

Contactors with extended operating range 0.7 to $1.25 \times U_{S}$
Size S00

Without series resistor: 3RH11 22-2KB40 -2KF40 3RT10 17-2KB41
-2KF41
-2KB42
-2KF42
For dimensions see page 3/179 (size S00)

Size S0 ${ }^{1)}$

Without series resistor: 3RT10 25-3KB40 -3KF40 3RT10 26-3KB40 -3KF40
For dimensions see page 3/180 (size SO)

Size S2 ${ }^{1)}$

Size S3 ${ }^{1)}$

[^12]Contactors with extended operating range 0.7 to $1.25 \times U_{S}$
3RT10 2 - -3X . 40-0LA2 contactors, size S0
Cage Clamp terminals

3RT10 3.-3X.40-0LA2 contactors, size S2
Cage Clamp terminals

3RT10 3.-1X.40-0LA2 contactors, size S2
Screw terminals

All dimensions not mentioned are identical to those of the contactors with DC operation (see page 3/180 to page 3/182).

Project planning aids
Contactors with extended operating range 0.7 to $1.25 \times U_{S}$
3RT10 4.-3X.40-0LA2 contactors, size S3
Cage Clamp terminals

3RT10 4.-1X.40-0LA2 contactors, size S3
Screw terminals

All dimensions not mentioned are identical to those of the contactors with DC operation (see page 3/180 to 3/182).

3RH11 contactor relays, size S00

with screw terminals,
with surge suppressor and auxiliary switch block

with Cage Clamp terminals,
with auxiliary switch block

3RH14 latched contactor relays, size S00

with surge suppressor and auxiliary switch block

3RH11 coupling relays

3RH11 coupling relays, size S00

with screw terminals,
with surge suppressor

Lateral distance to grounded components $=6 \mathrm{~mm}$

1) Auxiliary switch block
2) Surge suppressor
3) Drilling pattern

Project planning aids

3TH42/3TH43
AC operation

DC operation

Accessories for 3TH42/3TH43 contactor relays

3TX7 402-3. varistors,

3TX7 402-3A noise suppression diode,
3TX7 402-3D diode assemblies
(for DC operation) for 3TH42/3TH43 contactor relays for mounting onto the coil terminals

3TX4 180-0A ON-delay devices
for 3TH42/3TH43 contactor relays

3TX4 090-0C coupling link

for mounting onto the contactor coil of 3TH42/3TH43 contactor relays, without surge suppression

3TX4 090-0D coupling link

for mounting onto the contactor coil of 3TH42/3TH43 contactor relays with surge suppression

[^13]
Accessories for 3RT1 contactors

3RT19 16-2E . . ., 3RT19 16-2F . . ., 3RT19 16-2G . . .
solid-state time-delay auxiliary switch blocks for contactors, size S00

3RT19 26-2E . . ., 3RT19 26-2F . . ., 3RT19 26-2G . . .
solid-state time-delay auxiliary switch blocks for contactors, sizes S0 to S3

3RT19 16-2B. 01

OFF-delay devices
for contactors, sizes S00 to S3

3RT19 16-4KA1
solder pin adapters

Size S00

Mounted onto 3RT10 1. contactors with 1 auxiliary contact in the basic unit

3RT19 16-2
solid-state time-delay blocks, with ON-delay

Size S00

for mounting onto the front of contactors
(the dimensions are also valid for time-delay blocks with an OFF-delay)

3RT19 26-2 . . .
solid-state time-delay blocks, with ON-delay
Sizes S0 to S3
for mounting onto the top of the contactors
(the dimensions are also valid for time-delay blocks with an OFF-delay and for 3RH19 24-1GP11 coupling links)

3RT19 26-2P.. 1
pneumatic delay block
for contactors, size S0
for mounting onto the front of 3RT1. 2 contactors

3RT19 26-4P
screw adapters
for contactors of size SO

Project planning aids

Accessories for 3RT1 contactors

3RT19 16－4BB31
parallel connector
Size S00
3－pole，with terminal

3RT19 26－4BB31
parallel connector
Size S0
3－pole，with terminal
「ームー－－－「こム
窓窓窓

（8）

3RT19 46－4BB31
parallel connector
Size S3
3－pole，with through hole and cover for touch protection

3RT19 16－4BB41
parallel connector
Size S00
4－pole，with terminal

3RT19 36－4BB31
parallel connector
Size S2
3－pole，with terminal

3RT19 26－3A．
mechanical latching block

Accessories for 3RT1 contactors

3RT19 36-4EA2

terminal cover for box terminals

for size S2

3RT19 46-4EA2

terminal cover for box terminals
for size S3

3RT19 46-4EA1
terminal cover for cable lug and busbar connection for size S3

Project planning aids

Accessories for 3RT1 contactors

3RT19 46-4F

auxiliary terminals, 3-pole
Size S3
Mounted on contactor

3RH19 11-1AA. ., 3RH19 11-1LA . .
auxiliary switch blocks
for size S00
Screw terminals
2-pole
Cable entry from above

3RH19 11-1F . ., 3RH19 11-1H . .
auxiliary switch blocks according to EN 50012 and EN 50005

for size S00

Screw terminals
1- to 4-pole

3RH19 11-2F . . ., 3RH19 11-2H . . .
auxiliary switch blocks according to EN 50005 and EN 50012 for size S00
Cage Clamp terminals
1 - to 4-pole

1) Deviating dimension for auxiliary switch block with Cage Clamp terminals: mounting depth 42 mm .

3RH19 11-1BA .., 3RH19 11-1MA ..
auxiliary switch blocks
for size S00
Screw terminals
2-pole
Cable entry from below

3RH19 11-. NF . .
solid-state compatible auxiliary switch blocks according to EN 50005 for size S00
Screw terminals ${ }^{1)}$

3RH19 11-1AA.., 3RH19 11-1BA..
auxiliary switch blocks, 1-pole
for size S00
Cable entry from one side

Accessories for 3RT1 contactors

3RH19 21-. HA . ., 3RH19 21-. F . .
auxiliary switch blocks according to EN 50005 and EN 50012 for sizes S0 to S12
Screw and Cage Clamp terminals
4-pole

3RH19 21-1LA..
auxiliary switch block according to EN 50005 for sizes S0 to S12
Screw terminals

2-pole

Cable entry from above

3RH19 21-1D . . ., 3RH19 21-1J . . ., 3RH19 21-1E . . ., 3RH19 21-1K . . . auxiliary switch blocks, for lateral mounting for sizes S0 to S12
Screw terminals
2-pole

3RT19 00-4RE01 and 3RT19 16-4RD01
connection modules for contactors with screw terminals size $\mathbf{S 0 0}$

3RH19 21-. C . . .
auxiliary switch block according to EN 50005 and EN 50012 for sizes S0 to S12
Screw and Cage Clamp terminals
1-pole

3RH19 21-1MA. .

auxiliary switch block according to EN 50005
for sizes S0 to S12
Screw terminals

2-pole

Cable entry from below

3RH19 21-2D . . ., 3RH19 21-2J . . ., 3RH19 21-2E . . ., 3RH19 21-2K . . . auxiliary switch blocks, for lateral mounting
for sizes S0 to S12
Cage Clamp terminals
2-pole

3RT19 00-4RE01 and 3RT19 26-4RD01
connection modules for contactors with screw terminals size S0

Project planning aids

Accessories for 3RT1 contactors
3RT19 66-1PV3
main current path surge suppression module for 3RT12 vacuum contactors, sizes S10 and S12
Connected to outgoing side of contactor (2-T1/4-T2/6-T3) using approx. 350 mm long, molded cable

3RT19 .6-4EA1
terminal covers for busbar connections
Sizes S6 to S12
for mounting onto the contactor enclosure

	A	B	C	D	E	F
S6	119	324	107	241	91	52
S10	145	385	128	289	106	66
S12	145	399	128	303	124	66

3RT19 66-1PV4
main current path surge suppression module for 3RT12 vacuum contactors, sizes S10 and S12
Connected to outgoing side of contactor (2-T1/4-T2/6-T3) using approx. 350 mm long, molded cable

3RT19 .6-4EA2
terminal covers for box terminals
Sizes S6 to S12
for mounting onto box terminals

	A	B	C	D	E	F
S6	119	215	27	190	91	52
S10	145	265	30	235	106	66
S12	145	279	30	249	124	66

3RT19 .6-4BA31
links for paralleling
sizes S6 to S12

	A	B	\varnothing C
S6	91	199	10.5
S10	121	244	12.5
$\mathbf{S 1 2}$	121	258	12.5

Accessories for 3RA1 contactor assemblies
3RA19 54-2A
mechanical interlocks
Sizes S6 to S12

3RA19 .2-2A base plates for reversing contactor assemblies

	A	B	C	D	E
$\mathbf{S 6}$	190	205	250	229	9
S10	240	249	300	275	11
$\mathbf{S 1 2}$	280	249	330	275	11

3RA19 .2-2E, 3RA19 .2-2F
base plates for contactor assemblies for wye-delta starting

	A	B	C	D	E
S6-S6-S3	316	205	376	229	9
S6-S6-S6	343	205	403	229	9
S10-S10-S6	393	250	453	275	11
S10-S10-S10	423	250	483	275	11
S12-S12-S10	450	250	510	275	11
S12-S12-S12	465	250	525	275	11

Project planning aids

3RA13 reversing contactor assemblies

Size $\mathbf{S 0 0}$

Size S0
with 3RA19 24-2B
with 3RA19 24-1A
mechanical interlocking
On front

Size S2

Size S3

3RA13 reversing contactor assemblies
Size S6 with 3RA19 53-2A wiring module

Size S6 with 3RA19 53-2M wiring module

Project planning aids

3RA13 reversing contactor assemblies
Size S10

Size S12

3RA14 contactor assemblies for wye-delta starting
Sizes SOO - SOO - SOO

Sizes S0 - S0 - S0

Sizes S2-S2 - S0

Sizes S2-S2-S2

Project planning aids

3RA14 contactor assemblies for wye-delta starting
Sizes S3-S3-S2

3TG10 miniature contactors

3TG10..-0..contactors
with screw terminals

3TG10..-1..contactors
with tab connectors

3TG10 contactors

with 3UA7 overload relays

3RT19 16-4BB41 links for paralleling, 4-pole, with terminal for 3TG10 contactors

The links for paralleling can be reduced by one pole.
${ }^{1)}$ Can be snapped onto 35 mm standard mounting rail.

3TF68 and 3TF69 vacuum contactors, 3-pole

3TF68 vacuum contactors

3TF69 vacuum contactors

[^14]Detail
A = Contact erosion indication for vacuum interrupter contacts

Detail
A = Contact erosion indication for vacuum interrupter contacts

Project planning aids

Accessories for $3 T$ contactors

3TX7 462-3. varistors

3TX7 462-3., 3 TX7 522-3., 3TX7 572-3.
RC elements and varistors

3TX7 box terminals for laminated copper bars
Box terminals with cover, mounted to contactor

3TX7 686-0A and 3TX7 696-0A terminal covers For 3TF68 and 3TF69 contactors, size 14,
for screwing onto free screw end of the two outer conducting paths

3TX7 680-0D link for paralleling
for 3TF68 contactors

3TX7 090-0D coupling link for laterally snapping onto contactors

For contactor type	Box terminals	a	b	c
3TF68	3TX7 570-1.	182	178	300
3TF69	3TX7 690-1F	200	219	320

For contactor type	Terminal covers			
3TF68	3TX7 686-0A	a	b	c
3TF69	3TX7 696-0A	255	M10	104

3TX7 680-0E cover plate

for 3TX7 680-0D link for paralleling for 3TF68 contactor

3 TB5 contactors
3TB50 and 3TB52 contactors

Sizes 6 and 8

Type	a_{1}	a_{3}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{3}$	c_{2}	c_{3}	$\mathrm{~d}_{1}$	$\mathrm{~d}_{2}$	e_{3}	f_{4}	$\mathrm{~g}_{2}$
3TB50	120	100	150	130	23	198	37	15	133	137.5	M6
3TB52	135	110	180	160	28	217	42	20	154	147	M8

1) Minimum clearance from insulated components 3 mm . Minimum clearance from grounded components 10 mm .

3TX6 .. 6-3B terminal covers

For contactors Size	Type	b	h	।
6	3TB50	27	33	58
8	3TB52	34	44	75
10 to 12	3TB54 to 3TB56	38	56	95

3TD68, 3TE68 contactor assemblies
3TD68 contactor assemblies

3TE68 contactor assemblies

3TB54 and 3TB56 contactors
Sizes 10 and 12

Type	a_{1}	a_{3}	c_{2}	c_{3}	e_{3}	f_{4}
3TB54	145	120	30.5	264	168	188
3TB56	160	130	39	282	178	200

Project planning aids

3TK10 to 3TK17 contactors

3TK10 to 3TK17 contactors
The scope of supply includes screws and rubber buffers.

Contac- tors Type	a	b_{1}	$\mathrm{~b}_{2}$	c	c_{1}	$\mathrm{c}_{2}{ }^{1)}$	$\mathrm{c}_{2}{ }^{2)}$	$\mathrm{d}^{3)}$	emin.	f	g	h	h_{1}	k_{1}	$\mathrm{k}_{2}{ }^{4)}$	p	p_{1}	t	t_{1}
3TK10	186	165	136	120	140	166	187	6.6	40	41	15	156	156	7.5	134	154.5	102.3	10	
3TK11	186	165	136	120	140	168	187	11	40	42	20	156	172	10	134	154.5	102.3	10	4
3TK12	225	201	176	160	140	202	226	11	15	45	20	156	198	10	134	172	106.7	10	5
3TK13	225	201	176	160	140	202	226	11	15	45	20	156	198	10	134	172	106.7	10	5
3TK14	266	244	244	220	200	271	293	11	40	67	25	223	272	12.5	--	225.5	139.5	$235)$	6
3TK15	266	244	244	220	200	271	293	11	40	67	25	223	273	12.5	--	225.5	139.5	$235)$	6
3TK17	266	244	244	220	200	271	293	11	40	67	40	223	273	12.5	--	225.5	139.5	$235)$	6

1) Distance when 2 contactors, each with one auxiliary switch block opposite, are mounted.
2) Distance when 2 contactors, each with two auxiliary switch blocks opposite, are mounted.
[^15]Accessories for 3TK1 contactors
3TK19 4.terminal covers

Contactors Type	Terminal covers	h_{2}	p_{2} for			k_{2} for			b_{4}
			I	II	III	I	II	III	
3TK10, 3TK11	3TK19 40-0A	372	153	178	203	47	72	97	168
3TK12, 3TK13	3TK19 42-0A	399	158	183	208	47	72	97	202
3TK14, 3TK15	3TK19 44-0A	464	193	218	243	47	72	97	268
3 TK17	3TK19 46-0A	464	193	218	243	47	72	97	268

3TK19 20 and 3TK19 22 locking devices
for mechanical locking of two identical 3TK10 to 3TK13 contactors, mounted side by side on the mounting plate

Contactors Type	Locking devices	c_{2}	c_{3}	c_{4}
3TK10, 3TK11	3TK19 20-0A	120	140	65
3TK12, 3TK13	3TK19 22-0A	160	140	63.5

3TK19 24 locking device

for mechanical locking of two identical 3TK14, 3TK15 or 3TK17 contactors, mounted side by side on the mounting plate

Project planning aids

$3 T C 4$ and TC5 contactors

3TC44 contactors

Size 2, AC and DC operation

$\mathrm{t}=$ minimum clearance from insulated components: $15 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V$)$ from grounded components: $30 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)

	a	b
DC operation	109	141
AC operation	68	100

3TC52 contactors
Size 8, AC and DC operation

$\mathrm{t}=$ minimum clearance from insulated components: $20 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V$)$
from grounded components: $70 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)

	a	b
DC operation	147	232
AC operation	115	200

1) DC operation only.

3TC48 contactors
Size 4, AC and DC operation

$\mathrm{t}=$ minimum clearance from insulated components:			
from grounded components:			
		$15 \mathrm{~mm}(600 \mathrm{~V})$, $20 \mathrm{~mm}(750 \mathrm{~V})$ $35 \mathrm{~mm}(600 \mathrm{~V})$, $55 \mathrm{~mm}(750 \mathrm{~V})$	
	a	b	c
DC operation	112	180	21.5
AC operation	86	154	23.5

3TC56 contactors
Size 12, AC and DC operation

$\mathrm{t}=$ minimum clearance from insulated components: $25 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)

	from grounded components: $80 \mathrm{~mm}(600 \mathrm{~V})$	
$100 \mathrm{~mm}(750 \mathrm{~V})$		

3TC7 contactors
3TC74 contactors
Size 12, DC and AC operation

Dimensions	$\begin{array}{l}\text { Minimum clearance from } \\ \text { insulated } \\ \text { components }\end{array}$	$\begin{array}{l}\text { grounded } \\ \text { components }\end{array}$
a	≥ 20	≥ 50
b	≥ 10	≥ 25
c	≥ 180 (clearance for removing arc chute)	

3TX2 746-2. varistors
for 3TC74 and 3TC78 contactors

3TC78 contactors
Size 12, DC and AC operation

Dimensions	$\begin{array}{l}\text { Minimum clearance from } \\ \text { insulated } \\ \text { components }\end{array}$	$\begin{array}{l}\text { grounded } \\ \text { components }\end{array}$
	≥ 20	≥ 50
a	≥ 10	≥ 25
b	≥ 180 (clearance for removing arc chute)	
c	$\begin{array}{l}\text { Coil terminal } \\ \text { 3TC78 14-0E: } 8 \mathrm{~mm} \\ \text { d }\end{array}$	
	3TC78 14-1C: 16 mm	

Project planning aids

Contactors with extended operating range 0.7 to $1.25 \mathbf{x} \mathrm{U}_{\mathrm{s}}$

3TC44 17-0L contactors, size 2, DC operation

Varistor
$t=$ minimum clearance from insulated components: $15 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V$)$ from grounded components: $30 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)

Additional space requirements for mounting resistors and varistors
For 3TB50 to 3TB56, 3TC48 to 3TC56 contactors

Separately mounted series resistor

For contactors	Additional space requirements for series resistor c			
for varistor				
	a	b_{1}	$\left.\mathrm{~b}_{2}{ }^{*}\right)$	
3TB50	30	13	70	110
3TB52, 3TB54, 3TB56	-	15	82	120
3TC48	30	13	70	110
3TC52, 3TC56	--	15	82	120
*) Terminal compartment.				

For contactors	Number of series resistors
3TB52, 3TC52	1
3TB54, 3TB56	2
3TC56	2

Project planning aids

3TF2 contactors for switching motors, width 45 mm, size S00

3TF20, 3TF28,
with 1 auxiliary contact,
with screw terminals,
AC and DC operation,
without or with overload relay
(3UA7),

3TF20

with flat connectors $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$,
for snap-on and screw fixing,
AC and DC operation

3TF20

with solder pin connections for printed circuit boards for screw fixing (diagonal),
$A C$ and DC operation

(1) $3 T X 4490$ surge suppressor
(2) Additional module (on overload relay)

3TF20, 3TF22, 3TF28, 3TF29
with 2 to 5 auxiliary contacts, with screw terminals,
AC and DC operation,
without or with overload relay
(1) 3TX4 490 surge suppressor
(2) Additional module (on overload relay)
(3) Auxiliary switch block

3TX4 490 OFF-delay device

[^16]
3TF20

with flat connectors $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$,
for screw fixing (diagonal),
AC and DC operation

Grid size for
flat connectors
Grid size for
flat connectors
3TX4 491-2A plug-in base
with solder pin connections for printed circuit boards

Hole pattern for plug-in base

plug base

Project planning aids

3TK20 contactors, width 45 mm , size SOO

3TK20

with screw terminals,
for snap-on and screw fixing,
AC and DC operation

3TK20

with flat connectors $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$, for screw fixing (diagonal),
AC and DC operation

Grid size for flat connectors

3TK20

with flat connectors $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$,
for snap-on and screw fixing,
AC and DC operation

3TK20
with solder pin connections for printed circuit boards, for screw fixing (diagonal),
AC and DC operation

3TX4 491-2A plug-in base
with solder pin connections for printed circuit boards
${ }^{1)}$ Holes required only for integrated overvoltage damping in the plug-in base.

3TH2 contactor relays, width 45 mm , size S00
3TH20 with 4 contacts
with screw terminals,
AC and DC operation

3TH20 with 4 contacts
(1) 3 TX4 490
surge suppressor

AC and DC operation
(1) $3 T \times 4490$
surge suppressor

3TH20

with flat connectors $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$,
for snap-on and screw fixing,
AC and DC operation

$$
5,7 \times 4,5
$$

3TX4 491-2A plug-in base
with solder pin connections for printed circuit boards

Hole pattern for plug-in base
${ }^{1)}$ Holes required only for integrated overvoltage damping in the plug-in base.

3TH20 with 6 and 8 contacts, 3TH22 with 8 contacts with screw terminals, AC and DC operation

3TH20 with 6 and 8 contacts, 3TH22 with 8 contacts AC and DC operation
(1) 3 TX4 490 surge suppressor
(2) Auxiliary switch block

3TH2O

with solder pin connections for printed circuit boards for screw fixing (diagonal),
AC and DC operation

Hole pattern for solder pin
connections

3TX4 490 OFF-delay device

Project planning aids
3TH27 latched contactor relays, width 90 mm , size SOO
3TH27 with 4 contacts
with screw terminals,
for screw and snap-on mounting,
AC and DC operation

Coupling relays in industrial enclosure
3RS18

Coupling relays with narrow design

3TX7 002, 3TX7 003 coupling links in terminal block design
$3 T X 700$-1AB . .,
3TX7 00 .-2A...,
3TX7 002-3AB01

3TX7 002-3AB00,

3TX7 002-4A . . .

3TX7 004, 3 TX7 005 coupling links in double-decker design
3TX7 00 .-1MB00,
3TX7 00 .-1MF00,
3 TX7 00 --1L. 0 .,
3TX7 00 .-2M...
relay coupling links

3TX7 00 .-3AB04,
3 3TX7 00 -4AB04,
3TX7 00 .-3PB.
3TX7 00 .-3PG74,
3TX7 00 .-3RB43
semiconductor coupling links

3TX7 014, 3TX7 015
relay couplers with plug-in design

3TX7 014-7AA00 connecting comb, 16-pole

[^17]3TX7 00 .-3AC04,
3 TX7 00 .-3AC14,
3TX7 00 .-3AC03
semiconductor coupling links

3TX7 00 .-1BB00,
3TX7 00 .-1BF00, 3TX7 002-2BF02

3TX7 00 --1HB00 relay coupling links

3TX7 014-7CE00 galvanic isolation plate

3TX7 014-7B.0.
individual relay module

3TX7 00 .-1CB00, 3TX7 002-1FB02

$3 T X 700$-1GB00 relay coupling links

Project planning aids

LZS:PT relay couplers
Complete units, 11- and 14-pole, PT series

LZS:PT3A5

LZS:PT5A5
Standard plug-in base with screw terminals

LZS:PT5B5

Plug-in base with logical isolation and screw terminals

LZS:PT5D5

Plug-in base with logical isolation and plug-in terminals

LZX industrial relays, 8-, 11-, and 14-pole, PT series

LZX:PT270, 8-pole
2 CO

Plug-in bases for PT series
LZS:PT78740
with screw terminals

LZX:PT370, 11-pole
3 CO

LZS:PT78742
with logical isolation and screw terminals

LZX:PT520, LZX:PT570, LZX:PT580, 14-pole 4 CO

LZS:PT7874P
with logical isolation and plug-in terminals

Complete units, 8 -pole, 5 mm pinning, RT series

LZS:RT3A4;

LZS:RT4A4

Standard plug-in base with screw terminals

LZS:RT3B4;
LZS:RT4B4
Plug-in base with logical isolation and screw terminals

LZS:RT3D4;
LZS:RT4D4
Plug-in base with logical isolation and plug-in terminals

LZX:RT3; LZX:RT4 print relays

Plug-in bases for RT series

LZS:RT78725
with screw terminals

LZS:RT78726
with logical isolation and screw terminals

LZS:RT7872P
with logical isolation and plug-in terminals

Project planning aids
LZX:MT relay couplers
Industrial relays, 11-pole, MT series

LZX:MT32

LZS:MT78750 plug-in bases
for industrial relays

Schematics
Internal circuit diagrams for 3RT1 contactors and accessories（valid for screw and Cage Clamp terminals）

Size S00
Terminal designations according to EN 50012
3RT10 1 contactors

1 NO Ident．No．：10E	$\begin{aligned} & 1 \text { NC } \\ & 01 \end{aligned}$

3RT10 1 contactors（with 1 NO）
with front－mounted 3RH19 11－．H．．．auxiliary switch blocks
$1 \mathrm{NO}+1 \mathrm{NC}$
Ident．No．：11E

$2 \mathrm{NO}+2 \mathrm{NC}$

22E

$2 \mathrm{NO}+3 \mathrm{NC}$
Ident．No．：23E

$3 \mathrm{NO}+2 \mathrm{NC}$

32E

Size S0 to S3
Terminal designations according to EN 50012
3RT10 ．．－．X ．40－0LA2 contactors
Varistor built－in

Contactors with 4 main contacts，size S00 Terminal designations according to EN 50005
3RT13 and 3RT15 contactors

4 NO

$2 \mathrm{NO}+2 \mathrm{NC}$

（3RH19 11 auxiliary switch blocks acc．to EN 50005 can be snapped on）

Size S0 to S12
Terminal designations according to EN 50012
3RT10 2，3RT10 3 contactors
3RT10 5 to 3RT10 7，3RT12， 3RT14 contactors

3RT10 2 and 3RT10 3，3RT14 contactors
with front－mounted 4－pole 3RH19 21－．HA22 auxiliary switch block
$2 \mathrm{NO}+2 \mathrm{NC}$
Ident．No．：22E

Contactors 3RT1．5，3RT1．6，3RT1． 7 （sizes S6，S10，S12） with front－mounted 4－pole 3RH19 21－．HA22 auxiliary switch block or with lateral 2－pole 3RH19 21－1DA11 auxiliary switch blocks
2 NO＋ 2 NC
$\xrightarrow{2} \mathrm{~A}$
4－pole 3RH19 21－．HA．．／－XA．．auxiliary switch blocks，
for snapping onto the front ${ }^{1)}$
$3 \mathrm{NO}+1 \mathrm{NC} \quad 2 \mathrm{NO}+2 \mathrm{NC}$
$\begin{array}{ll}\text { Ident．No．：} 31 & 22 \\ \text { 3RH19 21－．HA．．} 3 R H 19 \text { 21－．HA．}\end{array}$

$\mathbf{2} \mathbf{N O}+\mathbf{2} \mathbf{N C}$	$\mathbf{1} \mathbf{N O}+\mathbf{3} \mathbf{N C}$
22	13

3RH19 21－．HA．．3RH19 21－．HA．．3RH19 21－．XA．．3RH19 21－．HA．

First laterally mountable 3RH19 21－．DA11，3RH19 21－2DE11 auxiliary switch block（solid－state compatible）

$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & \text { Left } \end{aligned}$	$1 \text { NO + } 1$ Right

Second laterally mountable 3RH19 21－．JA11，3RH19 21－2JE11 auxiliary switch block（solid－state compatible）
（only for sizes S3 to S12）

$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & \text { Left } \end{aligned}$	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & \text { Right } \end{aligned}$

Contactors with 4 main contacts，sizes S0 to S3 Terminal designations according to EN 50005
3RT13 and 3RT15 contactors

（3RH19 21 auxiliary switch blocks acc．to EN 50005 can be snapped on） for 3RT19 16－1T．．．diode assembly designation with＋／－）
Surge suppressors for sizes S00 to S3（coded plug－in direction；exception

Varistor with LED

[^18]
Controls - Contactors and Contactor Assemblies

Project planning aids

Internal circuit diagrams for 3RT1 contactors and accessories (valid for screw and Cage Clamp terminals)

Accessories for size $\mathbf{S 0 0}$ contactors and contactor relays

Terminal designations according to EN 50005
3RH19 11-.F... auxiliary switch blocks and 3RH19 11-.NF. . solid-state compatible auxiliary switch blocks (solid-state compatible auxiliary switch blocks

$\begin{aligned} & 2 \text { NO } \\ & \text { Ident. No.: } 20 \end{aligned}$	$\begin{aligned} & \mathbf{1} \mathbf{N O}+\mathbf{1} \mathrm{NC} \\ & 11 \end{aligned}$	$\begin{aligned} & 2 \text { NC } \\ & 02 \end{aligned}$	$\begin{aligned} & \mathbf{1} \mathrm{NO}+\mathbf{1} \mathrm{NC} \\ & 11 \mathrm{U} \end{aligned}$

4 NO
Ident. No.: 40
$3 \mathrm{NO}+1 \mathrm{NC}$ 31

3RH19 11-1AA.. and 3RH19 11-1BA.. auxiliary switch blocks,
for snapping onto the front, cable entry from above or below

1 NO

1 NC

$2 \mathrm{NO}+2 \mathrm{NC}$ 22

with make-before-break
$2 \mathrm{NO}+2 \mathrm{NC}$
22 U

with make-before-break

3RH19 11-1LA.. and 3RH19 11-1MA.. auxiliary switch blocks,
for snapping onto the front,
cable entry from above or below
2 NO
$1 \mathrm{NO}+1 \mathrm{NC}$
$\left.\left.\right|_{54} ^{53}\right|_{64} ^{63}{ }^{63}$
$2 \mathrm{NO}+2 \mathrm{NC}$ 11/11 U

$1 \mathrm{NO}+1 \mathrm{NC}$ standard $1 \mathrm{NO}+1 \mathrm{NC}$ with make-before-break Internal wiring

Example of $1 \mathrm{NO}+1 \mathrm{NC}$, cable entry from below

Accessories for size $\mathbf{S 0 0}$ contactors and contactor relays

Terminal designations according to DIN 46199 Part 5
3RT19 16-2E. . ./2F. . ./2G. . . solid-state, time-delay auxiliary switch blocks

$\begin{aligned} & 1 \text { NO + } 1 \text { NC } \\ & \text { With ON-delay } \end{aligned}$	$1 \mathrm{NO}+1 \mathrm{NC}$ OFF-delay	2 NO Wye-delta function

(Integrated varistors not shown)

Accessories for size S0 to S12 contactors Terminal designations according to EN 50005
3RH19 21-. F... auxiliary switch blocks, 4-pole, for snapping onto the front ${ }^{1}$)

4 NO
Ident. No.: 40

$3 \mathrm{NO}+1 \mathrm{NC}$ 31
(13

3RH19 21-.CA. . auxiliary switch blocks, 1-pole, for snapping onto the front ${ }^{1 \text {) }}$

1 NO	1 NC
$-\left.\right\|^{\cdot 3} \stackrel{\text { O}}{\substack{0}}$	

1 NC

$2 \mathrm{NO}+2 \mathrm{NC}$ 22

4 NC

04

$2 \mathrm{NO}+2 \mathrm{NC}$
22 U

with make-before-break
(Terminal designations according to EN 50005 or EN 50012)

1) Not for 3RT12 vacuum contactors.

Internal circuit diagrams for 3RT1 contactors and accessories (valid for screw and Cage Clamp terminals)
Accessories for size S0 to S12 contactors
Terminal designations according to EN 50005

3RH19 21-1LA. . and 3RH19 21-1MA. . auxiliary switch block, 2-pole,
for snapping onto the front ${ }^{1)}$
cable entry from above or below

3RH19 21-.FE22 solid-state compatible auxiliary switch block, 4-pole, for snapping onto the front ${ }^{1)}$
$2 \mathrm{NO}+2 \mathrm{NC}$
Ident. No.: 22

3RH19 21-.EA. . first laterally mountable auxiliary switch blocks (left)

2 NO

$\left.\left.\right|_{54} ^{53}\right|_{64} ^{63} \stackrel{\text { 畣 }}{\text { 品 }}$
$1 \mathrm{NO}+1 \mathrm{NC}$
2 NC

3RH19 21-. KA. . second laterally mountable auxiliary switch blocks (left) (only for sizes S3 to S12)

2 NO	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC
$\left.\left.\right\|_{154} ^{153}\right\|_{164} ^{163} \stackrel{10}{0_{0}^{2}}$		

Accessories for size S0 to S12 contactors
Terminal designations according to DIN 46199 Part 5
3RT19 26-2E. . ./2F. . ./2G. . . solid-state, time-delay auxiliary switch blocks

$1 \mathrm{NO}+1 \mathrm{NC}$	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NO
With ON-delay	OFF-delay	Wye-delta function

Accessories for contactors size S0

Terminal designations, pneumatic delay block
With ON-delay OFF-delay
3RT19 26-2PA. 1 3RT19 26-2PR. 1
(5)

1) Not for 3RT12 vacuum contactors.

Internal wiring

Example of
$1 \mathrm{NO}+1 \mathrm{NC}$,
cable entry
from below

3RH19 21-.EA. . first laterally mountable auxiliary switch blocks (right)

2 NO	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC

3RH19 21-.KA.. second laterally mountable auxiliary switch blocks (right)
2 NO
$1 \mathrm{NO}+1 \mathrm{NC}$
2 NC

3RH19 24-1GP11 coupling link with surge suppression

Connection diagram

Connection example

(1) Coupling link
(2) Contactor

Controls - Contactors and Contactor Assemblies

Project planning aids

Schematics for accessories for sizes S00 to S3
3RT19 16-2BK01, 110 V UC
3RT19 16-2BL01, 230 V UC OFF-delay devices

3RT19 16-2BK01, 110 V UC

110 V UC		A1	A3	A4	A5	B1	A2	Z+	Z-	$t_{\mathrm{v}}(\mathrm{ms})>$
SOO	DC	L+					L-	$\begin{aligned} & \text { 3RT1. 1.-.BF4. } \\ & \text { 3RH1. ..-.BF4. } \end{aligned}$		130
	50 Hz		L1				N			130
	60 Hz		L1				N			130
SO	DC	L+					L-	3RT1. 2.-.BF4.		100
	50 Hz		L1				N			100
	60 Hz		L1				N			100

24 V DC	A1	A2	$\mathbf{Z +}$	$\mathbf{Z -}$	$\boldsymbol{t}_{\mathbf{v}}(\mathbf{m s}) \mathbf{>}$
S00	$\mathrm{L}+$	$\mathrm{L}-$	3RT1.1.-.BB4. 3RH1....BB4.		
S0	$\mathrm{L}+$	$\mathrm{L}-$	3RT1.2.-. BB4.	150	
S2	$\mathrm{L}+$	$\mathrm{L}-$	3RT1.3.-.BB4.	90	
S3	$\mathrm{L}+$	$\mathrm{L}-$	3RT1.4.-.BB4.	70	

3RT19 16-2BL01, 230 V UC

Operation after OFF-delay
(Contactor only switches off with delay in case of voltage failure)

3RT19 16-2BE01, 24 V DC OFF-delay devices

3RT19 16-2BE01, 24 V DC

Operation before OFF-delay

(Contactor always switches off with delay)

Circuit diagrams for accessories for sizes S00 to S3

Accessories for size S00 to S3 contactors and contactor relays

Solid-state time-delay blocks
(note planning aids on Page 3/167!)

3RT19 26-2C. .
With ON-delay
Sizes S0 to S3

3RT19 16-2D..
OFF-delay (with auxiliary voltage)
Size S00

3RT19 26-2D.
OFF-delay (with auxiliary voltage) Sizes S0 to S3

A2 must only be connected to $\mathrm{N}(\mathrm{L}--)$ from the timing relay.
\times Do not connect
(1) Timing relay block
(2) Contactor

3RT16 capacitor contactors
Size SOO

Sizes S0 and S3

Internal circuit diagrams for accessories of size S00 to S3
Contactors with extended operating range 0.7 to $1.25 \times U_{\text {s }}$
Size $\mathbf{S 0 0}$
Terminal designations
according to EN 50012
3RT10 17-2K.42-0LA0 contactors

Series resistor R_{V}
plugged on,
NC contact prewired.

3RT10 17-2K.41/2K. 42 contactor Varistor integrated
Size S00
1 NO
Ident. No.: 10E

1 NC
01E

Terminal designations according to EN 50011
3RH11 22-2K. 40-0LA0 contactor relays

$2 \mathrm{NO}+1 \mathrm{NC}$ unassigned
Series resistor R_{V}
plugged on,
NC contact prewired.
3RH11 22-2K. 40 contactor relay
Varistor integrated
Size S00
$2 \mathrm{NO}+2 \mathrm{NC}$
22E

Size S00 to S3
Terminal designations
according to EN 50012
3RT10 2.-, 3RT10 3.-,
3RT10 4.-3K.44-OLAO contactors
with front-mounted 4-pole 3RH19 21-1HA22 auxiliary switch block
$2 \mathrm{NO}+2 \mathrm{NC}$
Ident. No.: 22

Circuit diagram of the series resistor wiring

The series resistor is supplied separately packed. The $21 / 22$ NC contact is necessary to wire the series resistor.
3RT10 25-3K. 40 contactor
Varistor integrated
Size S0

(Two single-pole auxiliary switch blocks can be snapped on)

Position of the terminals for 3RT1 contactors and accessories (valid for screw and Cage Clamp terminals)
Size S00
Terminal designations according to EN 50012
3RT10 1 contactors, 3RT10 1 coupling relays
3RT10 17-2K.4.contactors with extended operating range

1 NO
Ident. No.: 10E

3RT10 1 contactors (with 1 NO contact)
with front-mounted 3RH19 11-. H... auxiliary switch blocks
$1 \mathrm{NO}+1 \mathrm{NC}$
Ident. No.: 11E

$2 \mathrm{NO}+3 \mathrm{NC}$
Ident. No.: 23E

1	3	$\stackrel{5}{\bigcirc}$	13	$\mathrm{A} 1$
21	31	${ }^{41}$	53	
22	32	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	A2

Size S0 to S3

Terminal designations according to EN 50012
3RT10 X . 40-0LA2 contactors
with solid-state control unit

[^19]
Size S0 to S12

Terminal designations according to EN 50012
3RT10 2, 3RT 10 3,
3RT10 4, 3RT14 46 contactors,
3RT10 2 coupling relays
3RT10 25-3K. 40 contactors with extended operating range

$\bigcirc \mathrm{A} 1 \quad \mathrm{~A} 2 \bigcirc$	
	35
	$\bigcirc \bigcirc$
1. 2. 3. 4.	
1.	2. 3.4 .
	$\begin{array}{ll}\bigcirc & \bigcirc \\ 4 & 6\end{array}$
A1	$1 \mathrm{~A} 2 \bigcirc$

3RT10 2, 3RT10 3, 3RT10 4 contactors
with front-mountable
4-pole 3RH19 21-. HA31 auxiliary switch block
$3 \mathrm{NO}+1 \mathrm{NC}$
Ident. No.: 31 E

First laterally mountable
3RH19 21-.DA11 ${ }^{1)}$
auxiliary switch block
can be mounted on the left or right

3RT10 2, 3RT10 3, 3RT10 4
contactors
with front-mounted
4-pole 3RH19 21-.HA22
auxiliary switch block
$2 \mathrm{NO}+2 \mathrm{NC}$
Ident. No.: 22 E

3RT10 2, 3RT10 3, 3RT10 4 contactors with front-mountable 4-pole 3RH19 21-. HA13 auxiliary switch block
$1 \mathrm{NO}+3 \mathrm{NC}$
13 E

Second laterally mountable 3RH19 21-.JA11 ${ }^{\text {1) }}$
auxiliary switch block
can be mounted on the left or right
(only for sizes S3 to S12)
1 NO + 1 NC
Left

Right

Controls - Contactors and Contactor Assemblies

Project planning aids

Position of the terminals for 3RT1 contactors and accessories (valid for screw and Cage Clamp terminals)

Sizes S6 to S12

3RT1 .5, 3RT1 .6, 3RT1 . 7 contactors

- With conventional operating mechanism (3RT1...-. A...)
With laterally mountable auxiliary switch blocks
3RH19 21-1DA11
(for $2 \mathrm{NO}+2 \mathrm{NC}$, included in the contactors)
3RH19 21-1JA11
(can be extended to $4 \mathrm{NO}+$ 4 NC)
$2 \mathrm{NO}+2 \mathrm{NC}$ or $4 \mathrm{NO}+4 \mathrm{NC}$

- With solid-state operating
mechanism
(3RT1..--.N...)

With laterally mountable auxiliary switch blocks
3RH19 21-1DA11
(for $2 \mathrm{NO}+2 \mathrm{NC}$, included in the contactors)
3RH19 21-1JA11
(can be extended to $4 \mathrm{NO}+$ 4 NC)
$2 \mathrm{NO}+2 \mathrm{NC}$ or $4 \mathrm{NO}+4 \mathrm{NC}$

Contactors with 4 main contacts, size S00
Terminal designations according to EN 50005
3RT13 and 3RT15 contactors

4 NO

2 NO + 2 NC

- With solid-state operating
mechanism
(3RT1. ..-.P...)
With laterally mountable auxiliary switch blocks
3RH19 21-1DA11
(for $1 \mathrm{NO}+1 \mathrm{NC}$, included in the contactors)
3RH19 21-1JA11
(can be extended to $2 \mathrm{NO}+$ 2 NC)
$1 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NO}+2 \mathrm{NC}$

- With solid-state operating mechanism
(3RT1. ..-. Q...)
With laterally mountable auxiliary switch blocks
3RH19 21-1DA11
(for $1 \mathrm{NO}+1 \mathrm{NC}$, included in the contactors)
3RH19 21-1JA11
(can be extended to $2 \mathrm{NO}+$ 2 NC)
$1 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NO}+2 \mathrm{NC}$

Contactors with 4 main contacts, sizes $\mathbf{S 0}$ to $\mathbf{S 3}$
Terminal designations according to EN 50005
3RT13 and 3RT15 contactors

4 NO

$2 \mathrm{NO}+2 \mathrm{NC}$

Accessories for size $\mathbf{S 0 0}$ contactors and contactor relays

Terminal designations according to EN 50005
3RH19 11-.F... auxiliary switch blocks and 3RH19 11-. NF. . solid-state compatible auxiliary switch blocks for snapping onto the front

4 NO
Ident. No.: 40

$1 \mathrm{NO}+1 \mathrm{NC}$
11

$3 \mathrm{NO}+1 \mathrm{NC}$

2 NC
02

$1 \mathrm{NO}+1 \mathrm{NC}$
11 U

with make-before-break

$2 \mathrm{NO}+2 \mathrm{NC}$
11/11 U
with make-before-break

$1 \mathrm{NO}+1 \mathrm{NC}$ ON-delay $1 \mathrm{NO}+1 \mathrm{NC}$ with make-before-break

Position of the terminals for 3RT1 contactors and accessories (valid for screw and Cage Clamp terminals)
Accessories for size $\mathbf{S 0 0}$ contactors and contactor relays

Terminal designations according to EN 50005

3RH19 11-1AA.
auxiliary switch blocks for snapping onto the front
Cable entry from above

1 NO

3RH19 11-1LA20
2 NO

1 NC

3RH19 11-1LA11
$1 \mathrm{NO}+1 \mathrm{NC}$

3RH19 11-1BA.
auxiliary switch blocks for snapping onto the front
Cable entry from below

1 NO

3RH19 11-1MA20
2 NO

1 NC

3RH19 11-1MA11
$1 \mathrm{NO}+1 \mathrm{NC}$

Terminal designations according to DIN 46199 Part 5
3RT19 16-2E. . ./2F. . ./2G. . . solid-state, time-delay auxiliary switch blocks

$\begin{aligned} & 1 \mathrm{NO}+1 \text { NC } \\ & \text { With ON-delay } \end{aligned}$	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & \text { OFF-delay } \end{aligned}$	$2 \text { NO }$ Wye-delta f

Accessories for size S0 to S12 contactors
Terminal designations according to EN 50005
3RH19 21-.F. . . auxiliary switch blocks, 4-pole,
for snapping onto the front
4 NO
Ident. No.: 40

13	23	33	43
0	0	0	0
0	0	0	0
14	24	34	44
0.0			
0.0			
0			

3 NO + 1 NC

$2 \mathrm{NO}+2 \mathrm{NC}$
22

3RH19 21-1LA. . auxiliary switch blocks, 2-pole for snapping onto the front, cable entry from the top

2 NO

$1 \mathrm{NO}+1 \mathrm{NC}$

2 NC

4 NC
04

$2 \mathrm{NO}+2 \mathrm{NC}$
22 U

with make-before-break
3RH19 21-1MA. . auxiliary switch blocks, 2-pole, for snapping onto the front, cable entry from the bottom

2 NO

$1 \mathrm{NO}+1 \mathrm{NC}$

2 NC

3RH19 21-.FE22 solid-state compatible auxiliary switch block, 4-pole, for snapping onto the front

2 NO + 2 NC

Ident. No.: 22

Terminal designations according to EN 50005 or EN 50012
3RH19 21-.CA. . auxiliary switch blocks, 1-pole,
for snapping onto the front
1 NO
1 NC

1 NO

with extended contacting

1 NC

with extended contacting

Controls - Contactors and Contactor Assemblies

Project planning aids

Position of the terminals for 3RT1 contactors and accessories

Accessories for size S0 to S12 contactors

Terminal designations according to EN 50005
First laterally mountable 3RH19 21-. EA.. auxiliary switch blocks (left)

2 NO
$1 \mathrm{NO}+1 \mathrm{NC}$
2 NC

Second laterally mountable 3RH19 21- . KA. .
auxiliary switch blocks (left)
(only for sizes S3 to S12; can only be used if no auxiliary switches are snapped onto to the front)

2 NO

$153 \bigcirc \neg \angle L$
$163 \bigcirc 78 L$
$164 \bigcirc \varepsilon 8 t$
$154 \bigcirc \varepsilon \angle L$

$1 \mathrm{NO}+1 \mathrm{NC}$

2 NC

Accessories for size S0 to S12 contactors
Terminal designations according to DIN 46199 Part 5
3RT19 26-2E . . ./2F. . ./2G. . . solid-state, time-delay auxiliary switch blocks

1 NO + 1 NC
With ON-delay

1 NO + 1 NC
OFF-delay

2 NO
Wye-delta function

3RT16 capacitor contactors

Size S00
with 4-pole auxiliary switch block mounted on the front

The auxiliary switch block contains 3 leading contacts (not shown), and one unassigned NO contact and one unassigned NC contact.

First laterally mountable 3RH19 21- . EA. . auxiliary switch blocks (right)

2 NO

$1 \mathrm{NO}+1 \mathrm{NC}$
2 NC

Second laterally mountable 3RH19 21-. KA. .
auxiliary switch blocks (right)
(only for sizes S3 to S12; can only be used if no auxiliary switches are snapped onto to the front)

2 NO

$1 \mathrm{NO}+1 \mathrm{NC}$

2 NC

Size S0 and S3
with 4-pole auxiliary switch block mounted on the front

The auxiliary switch block contains 3 leading contacts (not shown) and one unassigned NO contact.

Position of the terminals for 3RT1 contactors and accessories
Contactors with extended operating range 0.7 to $1.25 \times \boldsymbol{U}_{\mathbf{s}}$

Size S00

Terminal designations according to EN 50012
3RT10 17-2K.42-0LA0 contactors

Series resistor R_{V} plugged on, NC contact prewired.
3RH19 11-2.... auxiliary switch blocks according to EN 50005 can be snapped on.

Terminal designations according to EN 50011
3RH11 22-2K.40-0LAO contactor relays

Series resistor R_{V} plugged on, NC contact prewired. 3RH19 11-2.... auxiliary switch blocks according to EN 50005 can be snapped on.

Contactor relays with extended tolerance 0.7 to $1.25 \times \boldsymbol{U}_{\mathbf{s}}$ Size S00
3RH11 22-2K. 40 contactor relays
$2 \mathrm{NO}+2 \mathrm{NC}$
Ident. No.: 22 E

It is not possible to mount an auxiliary switch block.

Contactors with extended operating range 0.7 to $1.25 \times \boldsymbol{U}_{\mathrm{S}}$ Size S0 to S3
 Terminal designations according to EN 50012

3RT10 2.-, 3RT10 3.-, 3RT10 4.-3K.44-0LA0 contactors with front 4-pole 3RH19 21-2HA22 auxiliary switch block

$2 \mathrm{NO}+2 \mathrm{NC}$

Ident. No.: 22 E

For circuit diagram of the series resistor wiring, see page 3/226.

[^20]
Project planning aids

Connection diagrams for 3RH1 contactor relays，size S00
Terminal designations according to EN 50011 ${ }^{1)}$
3RH11 contactor relays

4 NO Ident．No．：40E	$\begin{aligned} & 3 \mathrm{NO}+1 \mathrm{NC} \\ & 31 \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathbf{2} \text { NO + } \mathbf{2 N C} \\ & 22 \mathrm{NE} \end{aligned}$

3RH11 40 contactor relays
with 3RH19 11－1GA．
3RH12 44，3RH12 62 auxiliary switch blocks snapped onto the front

8 NO
 Ident．No．：80E

5 NO＋ 3 NC
Ident．No．：53E

7 NO＋ 1 NC 71E

$4 \mathrm{NO}+4 \mathrm{NC}$

44E

3RH14 latched contactor relays

4 NO

Ident．No．：40E

$3 \mathrm{NO}+1 \mathrm{NC}$

31E

$2 \mathrm{NO}+2 \mathrm{NC}$
22E

Surge suppressor（plug－in direction coded）

Diode	Diode assembly	Varistor	RC element	Diode with LED	Varistor with LED
本比落					

[^21]Connection diagrams for 3TH42 contactor relays with 8 contacts
Terminal designations according to EN 50011

8 NO

Ident. No.: 80E

$5 \mathrm{NO}+3 \mathrm{NC}$
Ident. No.: 53E

7 NO + 1 NC
71E

$4 \mathrm{NO}+4 \mathrm{NC}$
44E

6 NO + 2 NC

62E

$3 \mathrm{NO}+3 \mathrm{NC}$ and $1 \mathrm{NO}+1 \mathrm{NC}$ make-before-break 44E, U

Circuit diagrams for 3TH42 contactor relays with
8 contacts
3TX4 180-0A NTC thermistor module
Switching examples
Momentary-contact operation

Maintained-contact operation

Position of the terminals for 3TH42 contactor relays with 8 contacts

8 NO

dent. No.: 80E

7 NO + 1 NC

71E

6 NO + 2 NC 62E

$5 \mathrm{NO}+3 \mathrm{NC}$
53E

4 NO + 4 NC 44E

Controls - Contactors and Contactor Assemblies

Project planning aids

Connection diagrams for 3TH43 contactor relays with 10 contacts

Terminal designations according to EN 50011

$8 \mathrm{NO}+2 \mathrm{NC}$
82E

$5 \mathrm{NO}+5 \mathrm{NC}$
55E

Circuit diagrams for 3TH43 contactor relays with 10 contacts
3TX4 180-0A NTC thermistor module
Switching examples
Momentary-contact operation Maintained-contact operation

Position of the terminals for 3TH43 contactor relays with 10 contacts

10 NO

Ident. No.: 100E

$\bigcirc \mathrm{A} 1$				
13	23	33	43	53
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{63}$	73	83	93	03
	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	74	84	94	04
\bigcirc	\bigcirc	\bigcirc		
	24	34		
				2

6 NO + 4 NC
Ident. No.: 64E

9 NO + 1 NC
91E

$\bigcirc \mathrm{A} 1$				
$\begin{aligned} & 13 \\ & 0 \\ & \hline \end{aligned}$	23	33	43	53
	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	71	83	93	03
	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	72	84	94	04
$\begin{aligned} & \bigcirc \\ & 14 \end{aligned}$	\bigcirc	\bigcirc		

$5 \mathrm{NO}+5 \mathrm{NC}$
55E

$8 \mathrm{NO}+2 \mathrm{NC}$
82E

A 1				
13	23	33	43	53
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
63	71	83	91	03
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
64	72	84	92	04
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	54
			$A 2$	\bigcirc

$5 \mathrm{NO}+5 \mathrm{NC}$
55E, U

\bigcirc	A1			
13	23	37	43	53
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
63	71	85	91	01
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
64	72	86	92	02
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	38	44	54
			$A 2$	\bigcirc

7 NO + 3 NC
73E

Position of the terminals for 3RH1 contactor relays, size S00

Terminal designations according to EN 50011

3RH11 contactor relays

4 NO

Ident. No.: 40E

$3 \mathrm{NO}+1 \mathrm{NC}$
31E

3RH11 40 contactor relays
with 3RH19 11-1GA. ., 3RH12 44, 3RH12 62
auxiliary switch blocks snapped onto the front

\section*{8 NO
 Ident. No.: 80E
 | 13 | 23 | 33 | 43 | $\mathrm{C}^{\text {A1 }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 53 | 63 | 73 | 83 | |
| \bigcirc | \bigcirc | \bigcirc | \bigcirc | |
| \bigcirc | \bigcirc | \bigcirc | \bigcirc | |
| 54 | 64 | 74 | 84 | |
| \bigcirc | | \bigcirc | \bigcirc | \bigcirc |
| 14 | 24 | 34 | 44 | A2 |

$4 \mathrm{NO}+4 \mathrm{NC}$

Ident. No.: 44E

$\begin{aligned} & 13 \\ & 0 \end{aligned}$	23	33	43	A1
51	61	71	81	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
52	62	72	82	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	A2

3RH14 latched contactor relays

4 NO

Ident. No.: 40E
$7 \mathrm{NO}+1 \mathrm{NC}$

13	\bigcirc	33	$\bigcirc 3$	${ }^{\text {A1 }}$
53	\bigcirc	\bigcirc	83	
54	62	\bigcirc	$\begin{aligned} & \bigcirc \\ & 84 \end{aligned}$	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	A2

$2 \mathrm{NO}+2 \mathrm{NC}$
Ident. No.: 22E

3 NO + 1 NC
31E

$6 \mathrm{NO}+2 \mathrm{NC}$

13	23	33	43	$\mathrm{A1}$
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
53	61	71	83	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	0	\bigcirc	\bigcirc	
54	62	72	84	
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	A 2

$5 \mathrm{NO}+3 \mathrm{NC}$
53E

${ }^{13}$	23	33	${ }^{43}$	${ }^{\text {A1 }}$
53	$\bigcirc 1$	\bigcirc	81	
\bigcirc	62	72	82	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	A2

$2 \mathrm{NO}+2 \mathrm{NC}$

22E

Project planning aids

Connection diagrams for 3RH11 coupling relays for switching auxiliary circuits
DC operation
$\mathrm{L}+$ is to be connected to coil terminal A1.
3RH11 coupling relays for auxiliary circuits,

size S00

Terminal designations according to EN 50011
(it is not possible to snap on an auxiliary switch block)
Surge suppressor can be mounted

4 NO
 Ident. No.: 40E

Diode integrated

4 NO
Ident. No.: 40E

$3 \mathrm{NO}+1 \mathrm{NC}$
31E

$2 \mathrm{NO}+2 \mathrm{NC}$
22E

$2 \mathrm{NO}+2 \mathrm{NC}$
22E

Varistor integrated

$3 \mathrm{NO}+1 \mathrm{NC}$
$2 \mathrm{NO}+2 \mathrm{NC}$
22E

Surge suppressors for size $\mathbf{S 0 0}$ coupling relays

See 3RH11 contactor relays, page 3/232
Position of the terminals for 3RH11 coupling relays for switching auxiliary circuits
Size S00
3RH11 coupling relays

Main circuit

Control circuit

(The terminal designations for the contactors comply with EN 50012)

For momentary-contact operation

For maintained-contact operation

The 3RA19 13-2A assembly kit contains, among other The 3RA19 13-2A assembly kit contains, among other things, things, wiring connectors for connecting the main circuit.
the electrical interlock.

Sizes S0 to S3

Main circuit

The 3RA19.3-2A assembly kits contain, among other things, the wiring modules on the top and bottom for connecting the main current paths.

Control circuit
(The terminal designations for the contactors comply with EN 50005)
For momentary-contact operation
For maintained-contact operation

The 3RA19 24-2B mechanical interlock contains one NC contact for each contactor for the NC contact interlock.

Position of the terminals for 3RA13 reversing contactor assemblies

Size S0 to S3

Terminal designations according to EN 50005
3RA19 24-2B mechanical interlock (laterally mountable), integrated in reversing contactor assemblies (reversing starters), contains one NC contact for the electrical interlock for each contactor

2 NC

SO Button "OFF"
S1 Button "Clockwise ON"
S2 Button "Counterclockwise ON"
S Button "CW-OFF-CCW"
K1 Clockwise contactor
K2 Counterclockwise contactor
F1 Fuses for main circuit
F3 Fuses for control circuit
F2 Overload relays

Project planning aids

Circuit diagrams for 3RA14 wye-delta starting contactor assemblies

Size S00 Main circuit

Sizes S0 to S6 ${ }^{1 \text {) }}$
Main circuit

Sizes S6 to S12

1) Only 3RA19 53-2B assembly kit.

Control circuits

with 3RT19 16-2G... solid state time-delay auxiliary switch block, snapped onto the front (example circuits)

For momentary-contact operation

For maintained-contact operation

The contact element 27/28 for the solid-state time-delay auxiliary switch block with wye-delta function is only closed on the wye stage; the contact element is open in the delta stage as well as in the de-energized state.

Control circuits
with 3RP15 7. timing relay,
laterally mounted (example circuits)
For momentary-contact operation
For maintained-contact operation

The contact element $17 / 18$ is only closed in the wye stage; the contact element is open in the delta stage as well as in the de-energized state. $\mathrm{S} 1(\mathrm{~S})$ is connected to clamping point $\mathrm{K} 1 / 33$.

[^22]Internal circuit diagrams for 3TG10 miniature contactors

3TG10 10 contactors
1 NO
Ident. No.: 10E

3TG10 01 contactors
1 NC
01E

Internal circuit diagrams for 3TF68 and 3TF69 vacuum contactors, 3-pole

3TF68 44 and 3TF69 44 contactors

$4 \mathrm{NO}+4 \mathrm{NC}$

AC operation
Maximum number of auxiliary contacts that can be fitted

3TF68 33 and 3TF69 33 contactors
$3 \mathrm{NO}+3 \mathrm{NC}$
DC operation
Maximum number of auxiliary contacts that can be fitted

$3 T Y 7$ 681-1G	3 TY7 561-1AA00	3 TY7 561-1KA00	3 YY7 561-1EA00
auxiliary switch blocks	auxiliary switch blocks	auxiliary switch blocks	auxiliary switch blocks
for coil reconnection, 3TF68 and 3TF69,	1st auxiliary switch block left or right	2nd auxiliary switch block left or right	with overlapping contacting
	Mounted on left Mounted on right	Mounted on left Mounted on right	Mounted on left Mounted on right
	$\left.\right\|_{14} ^{\left.13\right\|_{22} ^{21} \stackrel{8}{2}}$		

3TY7 561-1. auxiliary switch blocks
Solid-state compatible auxiliary switch block
Mounted on left Mounted on right

3TX7 090-0D
coupling links for control by PLC
with surge suppression

Circuit diagrams for 3TF68 and 3TF69 vacuum contactors, 3-pole
DC economy circuit - Maintained-contact operation
3TF68 33-.D. 4 and 3TF69 33-.D. 4 contactors

For AC control supply voltage subject to strong interference 3TF68 33-. Q. 7 and 3TF69 33-.Q. 7 contactors

Project planning aids

Internal circuit diagrams for 3TB50 to 3TB56 contactors, 3-pole

Sizes 6 to 12
3TB50 to 3TB56
DC operation
Auxiliary contacts: $\mathbf{2}$ NO + 2 NC

Auxiliary switch block
3TY6 501-1E, 3TY6 561-1E
With overlapping
contacting

Circuit diagrams for 3TD68 reversing contactor assemblies

Main circuit

In the main circuit the connections are made between contactors K1 and K2 .

Control circuits

The control circuit cables indicated by broken lines are not wired in the factory.
Momentary-contact operation
Maintained-contact operation

Terminal designations of the unassigned auxiliary contacts

Contactor assembly	With electrical interlock				Without electrical interlock			
	Contactor K1 NO contact	NC contact	Contactor K2 NO contact	NC contact	Contactor K1 NO contact	NC contact	Contactor K2 NO contact	NC contact
3 3TD68	13-14	21-22	13-14	31-32	13-14	21-22	13-14	21-22
	43-44	61-62	43-44	61-62	43-44	31-32	43-44	31-32
	53-54	71-72	53-54	71-72	53-54	61-62	53-54	61-62
	83-84		83-84		83-84	71-72	83-84	71-72

SO Button "OFF"
S1 Button "Clockwise ON" S2 Button "Counterclockwise ON" S Button "CW-OFF-CCW" K1 Clockwise contactor K2 Counterclockwise contactor F1 Fuses for main circuit F3 Fuses for control circuit F2 Overload relays

Circuit diagrams for 3TE68 wye-delta starting contactor assemblies

Main circuit

Single infeed
Without main conducting path connection between line and delta contactors

Double infeed
Without main conducting path connection between line and delta contactors

Control circuit with 3RP1 574 timing relay

For momentary-contact operation
For maintained-contact operation

The contact element $17 / 18$ is only closed in the wye stage; the contact element is open in the delta stage as well as in the de-energized state.
SO Button "OFF"
S1 Button "ON"
S Maintained-contact switch
K1 Line contactor
K2 Star contactor
K3 Delta contactor
K4 Timing relay
F0 Fuses
F1 Overload relays

Internal circuit diagrams for 3TK1 contactors, 4-pole (4 NO) for switching resistive loads (AC-1)
3TK1 contactors
3TK1 910-3B
auxiliary switch block
Mounted on left
Mounted on right

$\left.\right|_{54} ^{53 \mid 62}$

Project planning aids

Internal circuit diagram for 3TC44 to 3TC56 contactors for switching DC voltage

Internal circuit diagrams for 3TC74, 3TC78 contactors for switching DC voltage
DC operation
3TC74 contactors
Auxiliary contacts 4 NO + 4 NC
3TC78 contactors

Auxiliary contacts 4 NO + 4 NC

AC operation
Auxiliary contacts 4 NO + 4 NC
Auxiliary contacts 4 NO + 4 NC
Must be operated in the DC circuit
Must be operated in the DC circuit
-

Circuit diagrams for 3TC74, 3TC78 contactors for switching DC voltage

3TC74 contactors
Momentary-contact operation DC operation

3TC78 contactors
Momentary-contact operation
DC operation

Maintained-contact operation

Maintained-contact operation

Momentary-contact operation Maintained-contact operation AC operation (must be operated in the DC circuit)

Circuit diagrams for $3 T$ contactors with extended operating range 0.7 to $1.25 \times U_{s}$

Circuit with series resistor Rv (size 2 or larger)
without reversing contactor

Position of the terminals for 3TG10 miniature contactors

3TG10 10 contactors
1 NO

3TG10 01 contactors
1 NC

Rv:
Two resistors are connected in series for 3TB54, 3TB56 and 3TC56 contactors.
K2:
For 3TB52 to 3TB56 and 3TC52 to 3TC56: 3RT13 17-1F. 40

Position of the terminals for 3TF68 and 3TF69 vacuum contactors, 3-pole

AC operation
3TF68 and 3TF69 contactors

$4 \mathrm{NO}+4 \mathrm{NC}$

DC operation
3TF68 and 3TF69 contactors
$3 \mathrm{NO}+3 \mathrm{NC}$
Maximum number of auxiliary contacts that can be fitted

3TY7 561-1. solid-state compatible auxiliary switch blocks for lateral mounting

Left Right mounted mounted | 54 |
| :---: |
| 0 |
| 51 |
| 51 |
| 0 |
| 52 |
| 0 |

Project planning aids
Position of the terminals for 3TB50 to 3TB56 contactors, 3-pole
Size 6 to 12
3TB50 to 3TB56 contactors
$2 \mathrm{NO}+2 \mathrm{NC}$

Position of the terminals for 3TK1 contactors for switching resistive loads (AC-1)
3TK10 to 3TK17 contactors
$2 \mathrm{NO}+2 \mathrm{NC}$

Position of the terminals for 3TC contactors for switching DC voltage
AC and DC operation

Size 2
3TC44 contactors

DC operation 3TC74 contactors

Sizes 4, 8 and 12
3TC48 to 3TC56 contactors

AC operation 3TC74 contactors

DC operation 3TC78 contactors

${ }_{0}^{1}$	${ }^{3}$
$\begin{array}{cc}0 & 0 \\ 22 & 32 \\ 0 & 0 \\ 14 & 44\end{array}$	$\begin{array}{cc}\circ & \circ \\ 62 \\ 62 & 72 \\ 54 & 0 \\ 54 & 84\end{array}$
$\begin{array}{cc}\circ & 0 \\ 13 & 43 \\ 0 & 0 \\ 21 & 31\end{array}$	$\begin{array}{cc}\circ & 0 \\ 53 \\ 53 & 83 \\ 0 & 0 \\ 61 & 71\end{array}$
	${ }_{4}$

AC operation
3TC78 contactors

${ }_{0}^{1}$	${ }^{3}$
$\begin{array}{cc}\circ & 0 \\ 22 & 32 \\ 0 & 0 \\ 14 & 44\end{array}$	$\begin{array}{cc}\circ & \\ 62 \\ 62 & 72 \\ 0 \\ 54 & 8 \\ 0\end{array}$
$\begin{array}{cc}0 & 0 \\ 13 & 43 \\ 0 & 0 \\ 21 & 31\end{array}$	$\begin{array}{cc}0 & 0 \\ 53 & 83 \\ 0 & 0 \\ 61 & 71\end{array}$
	${ }_{4}$

Terminal designations according to EN 50012

3TF20 ．．－0 and 3TF28 ．．－0 contactors with AC and DC operation

3TF20 10 contactors with 3TX4 4 ．．－1 auxiliary switch block，
3TF22 and 3TF29 contactors
with AC and DC operation

$\mathrm{NO}+1 \mathrm{NC}$

Ident．No．11E

$2 \mathrm{NO}+3 \mathrm{NC}$

Ident．No．：23E

Terminal designations according to EN 50005

3TX4 4 ．．－2 auxiliary switch block
4 NO
Ident．No．： 40

2 NO Ident．No．： 20	$\begin{aligned} & \mathbf{1} \mathrm{NO}+\mathbf{1} \mathrm{NC} \\ & 11 \end{aligned}$
$\left.\left.\left.\right\|_{53} ^{53}\right\|_{54} ^{63}\right\|_{64} ^{63} \stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{0}{2}}$	

Project planning aids

3TF20 ．．－3，3TF20 ．．．－6 and 3TF20 ．．－7 contactors
with AC and DC operation

1 NO Ident．No．：10E	$\begin{aligned} & 1 \mathrm{NC} \\ & 01 \mathrm{E} \end{aligned}$

$2 \mathrm{NO}+2 \mathrm{NC}$

22 E

3 NO＋ 2 NC

32E

$2 \mathrm{NO}+2 \mathrm{NC}$

with make－before－break

$1 \mathrm{NO}+1 \mathrm{NC}$

11U

with make－before－break

3TK20 contactors

4 NO

$3 \mathbf{N O}+1 \mathbf{N C}$

$2 \mathrm{NO}+2 \mathrm{NC}$

Surge suppressors

Diode	Diode assembly	Varistor	RC element	Diode with LED	Varistor with LED
$\overleftarrow{4}^{-\stackrel{\rightharpoonup}{0} 0}$				农电总	

Controls - Contactors and Contactor Assemblies

Project planning aids

Internal circuit diagrams for 3TH2 contactor relays and 3TH27 latched contactor relays

Size S00

Terminal designations according to EN 50011
3TH20 ..-0 contactor relays,
AC and DC operation,
with screw terminals
4 NO
Ident. No.: 40E
$3 N O+1 N C$
31E

3TH20 ..-3, 3TH20 ..-6, 3TH2O ..-7 contactor relays,
AC and DC operation,
with flat connectors $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ and solder pin connections

4 NO Ident. No.: 40E	$\begin{aligned} & 3 \mathrm{NO}+1 \mathrm{NC} \\ & 31 \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathbf{2} \mathbf{N O}+\mathbf{2 N C} \\ & 22 \mathrm{~N} \end{aligned}$

3TH22 contactor relay

8 NO Ident. No.: 80E	$\begin{aligned} & 7 \mathrm{NO}+1 \mathrm{NC} \\ & 71 \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathbf{6} \text { NO + } \mathbf{2 N C} \\ & 62 \mathrm{~N} \end{aligned}$

5 NO + 3 NC

Ident. No.: 53E

$4 \mathrm{NO}+4 \mathrm{NC}$

44E

3TH27 latched contactor relays,
AC and DC operation
4 NO
Ident. No.: 40 E

3 NO + 1 NC
31E

$2 \mathrm{NO}+2 \mathrm{NC}$

22E

Terminal designations according to EN 50005

3TX4 4 ..-2 auxiliary switch block
Positively-driven operation is assured likewise for auxiliary switch blocks according to EN 50005 in conjunction with 3TH20 contactor relays (basic units).

4 NO Ident. No.: 40	$\begin{aligned} & \mathbf{3} \mathrm{NO}+1 \mathrm{NC} \\ & 31 \end{aligned}$	$\begin{aligned} & \mathbf{2} \mathbf{N O}+\mathbf{2} \mathbf{N C} \\ & 22 \end{aligned}$		$\begin{aligned} & \mathbf{2} \mathbf{N O}+\mathbf{2 N C} \\ & 22 \mathrm{~N} \end{aligned}$
$\left.\left.\left.\left.\left.\right\|_{54} ^{53}\right\|_{54} ^{53}\right\|_{74} ^{63}\right\|_{84} ^{73}\right\|_{\frac{0}{2}} ^{83}$	$\left.\left.\left.\left.\left.\right\|_{54} ^{53}\right\|_{62} ^{61}\right\|_{64} ^{61}\right\|_{84} ^{73}\right\|_{80} ^{83}$			with make-before-break
$\begin{aligned} & 2 \text { NO } \\ & \text { Ident. No.: } 20 \end{aligned}$	$\begin{aligned} & \mathbf{1} \mathrm{NO}+1 \mathrm{NC} \\ & 11 \end{aligned}$	$\begin{aligned} & 2 \text { NC } \\ & 02 \end{aligned}$		$\begin{aligned} & \mathbf{1} \mathrm{NO}+\mathbf{1} \mathrm{NC} \\ & 11 \cup \end{aligned}$
				with make-before-break
Surge suppressors Diode	Diode assembly Varistor	RC element	Diode with LED	Varistor with LED
$\underbrace{-\stackrel{\rightharpoonup}{0}}_{=}$				

Relay couplers - connection diagrams for 3TX7 002/3TX7 003
Terminal designations according to EN 50005

-1B. 00

-1B. 00

-1CB00

1 своо

-1FB02

-2BF02

Relay couplers - position of the terminals

Relay couplers - connection diagrams for 3TX7 004/3TX7 005
Output coupling links

3TX7 00.-1M. 00

3TX7 00.-1AB10

3TX7 00.-1BB00 3TX7 00.-1BF05

3TX7 00.-1L. 0.

3TX7 00.-1BB10

$$
\begin{aligned}
& A=\text { Automatic } \\
& 0=\text { Neutral position } \\
& M=\text { Manual }
\end{aligned}
$$

Input coupling links 3TX7 00.-2M. 02

Project planning aids

Relay couplers - position of the terminals
Output coupling links

$\begin{aligned} & \text { 3TX7 } 004 \\ & -1 \mathrm{M.} 00 \end{aligned}$	-1L.0.	-1AB10	-1B.0.	-1BB10	-1CB00	-1HB00	-1GB00	3TX7 004-2M...
$\begin{aligned} & \text { 3TX7 } 005 \\ & -1 \text { M. } 00 \end{aligned}$	-1L. 0.	-1AB10	-1BB00	-1BB10	-1CB00	-1HB00	-1GB00	3TX7 005-2M...

Semiconductor couplers - connection diagrams
Terminal designations according to EN 50005

3TX7 002-3AB00

-3AB01

-4AB00

-4AG00

Semiconductor couplers - position of the terminals

Semiconductor couplers - connection diagrams
Output coupling links

3TX7 00.-3PB54
3TX7 00.-3PG74 3TX7 00.-3PB74

3TX7 00.-3AC03

3TX7 00.-3AC04

Input coupling links 3TX7 00.-4AB04

A= Automatic
$0=$ Neutral position
M = Manual

LZX plug-in relays - relay couplers

LZX:PT270
2-pole

LZX:RT3
1-pole
 Without brackets: contact/coil designations.

Position of the connection terminals
Standard plug-in bases for PT series

LZS:PT78720

for 2 CO contacts, with screw terminals

LZX:PT370
3-pole

LZX:RT4
2-pole

LZS:PT78730

for 3 CO contacts, with screw terminals

LZX:PT520, LZX:PT570, LZX:PT580 4-pole

$$
\mathrm{om}_{(13) \mathrm{A} 1}^{m_{\text {A2(14) }}^{\circ}}
$$

LZX:MT32
3-pole

LZS:PT78740

for 4 CO contacts, with screw terminals

Plug-in bases with logical isolation for PT series

LZS:PT78722

for 2 CO contacts,
with screw terminals

LZS:PT78742
for 4 CO contacts,
with screw terminals

LZS:RT78726
with logical isolation and screw terminals

LZS:RT7872P
with logical isolation and spring-type terminals

Plug-in bases for MT series
LZS:MT78750
for industrial relays

[^0]: Note:
 For safety characteristics for contactors see LV 12009 "Appendix" --> "Standards and approvals" --> "Overview".

[^1]: (13) Screw terminals

 O Cage Clamp terminals or spring-type terminals

 - Flat connectors
 a Plug-in terminals
 \square Solder pin connections
 These connections are indicated in the Technical specifications by orange backgrounds.

[^2]: 1) Snap-on auxiliary switch blocks for size SOO and laterally mountable auxiliary switch blocks for S0 to S12: 6 A .
[^3]: 1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into
 2) According to IEC 60947-4-1. account).

 For rated values for various start-up conditions see "Protection Equipment -> Overload Relays".

[^4]: 1) For endurance of the main contacts see page $3 / 19.2$ 2) For conductor cross-sections see page $3 / 32$.
[^5]: 1) Depending on the electronic ballast used, higher lamp numbers are also possible.
[^6]: ${ }^{\text {1) }}$ For endurance of the main contacts see page 3/19.
 ${ }^{3)}$ For electromagnetic compatibility (EMC) see page 3/12.
 2) For conductor cross-sections see page $3 / 59$.

[^7]: 1) For more information about short-circuit values, e. g. for protection against short-circuit currents, see the UL guide (Order No.: A5E02118883 for German) or
[^8]: 1) Contact endurance 0.1×10^{6} operating cycles
[^9]: ${ }^{\text {) }}$ Note the short-circuit limitation for control with the semiconductor version!

[^10]: 2) See 3RT10 1 contactors, page $3 / 23$.
[^11]:) Applies to $50 / 60 \mathrm{~Hz}$ coil
 Operating range at $60 \mathrm{~Hz}: 0.85 \ldots 1.1 \times U_{S}$;
 at $50 \mathrm{~Hz}, 1.1 \times U_{\mathrm{s}}$, side-by-side mounting and 100% ON period the max.

[^12]: 1) Sizes S 0 to S 3 : Contactor series resistor must be connected by customer. The series resistor is equipped with the necessary connecting cables.
[^13]: 1) For 35 mm standard mounting rail.
[^14]: ${ }^{1)}$ With box terminals for laminated copper bars (accessories).

[^15]: 3) Nuts, bolts, screws and washers are supplied.
 4) Minimum clearance for removing the withdrawable coil.
 ${ }^{5)}$ Damping elements are supplied.
[^16]: 1) Holes required only for integrated overvoltage damping in the plug-in base.
[^17]: 1) Dimensions for $3 T X 7004$ coupling links (screw terminals).
 2) Dimensions for 3 TX 7005 coupling links (spring-type terminals).
[^18]: 1）Not for 3RT12 vacuum contactors．

[^19]: ${ }^{1)}$ Note location identifier. Can only be used if no 4-pole auxiliary switch block is snapped onto the front.

[^20]: Note:
 For position of terminals for the 3RT10 17-2K.4. and 3RT10 25-3K. 40 contactors see page 3/227.

[^21]: 1）Positively－driven operation is assured likewise for auxiliary switch blocks according to EN 50005 in conjunction with 3RH11 contactor relays（basic units）．

[^22]: S0 Button "OFF
 S1 Button "ON"
 S Maintained-contact switch
 K1 Line contactor
 K2 Star contactor
 K3 Delta contactor
 K4 Solid-state, time-delay auxiliary switch block or timing relay
 F0 Fuses
 F1 Overload relays

